Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T10:11:20.332Z Has data issue: false hasContentIssue false

A Combinatorial Approach to Reliable Quantitative Analysis of Small Nano-Sized Precipitates: A Case Study with α′ Precipitates in Fe–20 at% Cr Alloy

Published online by Cambridge University Press:  02 December 2021

Sudip Kumar Sarkar*
Affiliation:
Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400085, India Homi Bhabha National Institute, Mumbai 400094, India
Deodatta Shinde
Affiliation:
Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400085, India
Debasis Sen
Affiliation:
Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India Homi Bhabha National Institute, Mumbai 400094, India
Aniruddha Biswas
Affiliation:
Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400085, India Homi Bhabha National Institute, Mumbai 400094, India
*
*Corresponding author: Sudip Kumar Sarkar, E-mails: s.sudip.iitg@gmail.com; sudips@barc.gov.in
Get access

Abstract

The quantitative characterization of small nano-sized precipitates poses genuine challenges and is often deficient in accuracy due to the inherent limitations inevitably associated with the individual experimental techniques. A convenient solution is to utilize multiple complementary techniques. The present work demonstrates an effective way to reliably quantify nano-sized precipitates using a combination of complementary techniques of atom probe tomography (APT), small angle neutron scattering (SANS), and transmission electron microscopy (TEM). As a case study, the size (radius, r), number density (NP), volume fraction (ϕ), and chemical composition of Cr-rich α′ precipitates are determined in Fe–20 at% Cr alloy, thermally aged at 773 K for 1,000 h. This combinatorial approach utilizes the strength of each technique in such a way that the overall accuracy of quantitative precipitation analysis improves significantly. For example, the superior spatial resolution makes TEM the appropriate technique to estimate the size and size distribution of the precipitates, while APT provides the chemical composition. Similarly, SANS analysis incorporates both the size and the compositional information thus derived independently and provides statiscally averaged quantitative analysis overcoming the field-of-view limitations of both TEM and APT. This combinatorial approach improves the accuracy of quantification and provides the true representation of the microstructure.

Type
Applications in Alloys
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlawat, S, Sarkar, SK, Sen, D & Biswas, A (2019). Revisiting temporal evolution of Cu-rich precipitates in Fe–Cu alloy: Correlative small angle neutron scattering and atom-probe tomography studies. Microsc Microanal 25, 840848.CrossRefGoogle ScholarPubMed
Aitchison, J (1957). The Lognormal Distribution, with Special Reference to Its Uses in Economics. Cambridge: University Press.Google Scholar
Aruga, Y & Kozuka, M (2016). Effects of isoconcentration surface threshold values on the characteristics of needle-shaped precipitates in atom probe tomography data from an aged Al–Mg–Si alloy. Microscopy 65, 169176.CrossRefGoogle ScholarPubMed
Ashby, MF & Ebeling, R (1966). On the determination of the number, size, spacing, and volume fraction of spherical second-phase particles from extraction replicas. Trans Metall Soc AIME 236, 13961404.Google Scholar
Aswal, VK & Goyal, PS (2000). Small-angle neutron scattering diffractometer at Dhruva reactor. Curr Sci 79, 947953.Google Scholar
Bachhav, M, Robert Odette, G & Marquis, EA (2014). α′ precipitation in neutron-irradiated Fe–Cr alloys. Scr Mater 74, 4851.CrossRefGoogle Scholar
Badyka, R, Monnet, G, Saillet, S, Domain, C & Pareige, C (2019). Quantification of hardening contribution of G-phase precipitation and spinodal decomposition in aged duplex stainless steel: APT analysis and micro-hardness measurements. J Nucl Mater 514, 266275.CrossRefGoogle Scholar
Barton, DJ, Hornbuckle, BC, Darling, KA & Thompson, GB (2019). The influence of isoconcentration surface selection in quantitative outputs from proximity histograms. Microsc Microanal 25, 401409.CrossRefGoogle ScholarPubMed
Bergner, F, Pareige, C, Kuksenko, V, Malerba, L, Pareige, P, Ulbricht, A & Wagner, A (2013). Critical assessment of Cr-rich precipitates in neutron-irradiated Fe–12 at%Cr: Comparison of SANS and APT. J Nucl Mater 442, 463469.CrossRefGoogle Scholar
Bergner, F, Ulbricht, A & Heintze, C (2009). Estimation of the solubility limit of Cr in Fe at 300 °C from small-angle neutron scattering in neutron-irradiated Fe–Cr alloys. Scr Mater 61, 10601063.CrossRefGoogle Scholar
Biswas, A, Sen, D, Sarkar, SK, Sarita, , Mazumder, S & Seidman, DN (2016). Temporal evolution of coherent precipitates in an aluminum alloy W319: A correlative anisotropic small angle X-ray scattering, transmission electron microscopy and atom-probe tomography study. Acta Mater 116, 219230.CrossRefGoogle Scholar
Biswas, A, Siegel, DJ & Seidman, DN (2014). Compositional evolution of Q-phase precipitates in an aluminum alloy. Acta Mater 75, 322336.CrossRefGoogle Scholar
Biswas, A, Siegel, DJ, Wolverton, C & Seidman, DN (2011). Precipitates in Al–Cu alloys revisited: Atom-probe tomographic experiments and first-principles calculations of compositional evolution and interfacial segregation. Acta Mater 59, 61876204.CrossRefGoogle Scholar
Black, MP (2002). Microstructural evolution of austenite in a microalloyed Fe30% Ni alloy. Sheffield (United Kingdom) : University of Sheffield. https://etheses.whiterose.ac.uk/12774/1/251523.pdf (Accessed February 25, 2021).Google Scholar
Blavette, D, Bostel, A, Sarrau, JM, Deconihout, B & Menand, A (1993). An atom probe for three-dimensional tomography. Nature 363, 432435.CrossRefGoogle Scholar
Blavette, D, Déconihout, B, Chambreland, S & Bostel, A (1998). Three-dimensional imaging of chemical order with the tomographic atom-probe. Ultramicroscopy 70, 115124.CrossRefGoogle Scholar
Blavette, D, Vurpillot, F, Pareige, P & Menand, A (2001). A model accounting for spatial overlaps in 3D atom-probe microscopy. Ultramicroscopy 89, 145153.CrossRefGoogle Scholar
Brenner, SS, Miller, MK & Soffa, WA (1982). Spinodal decomposition of iron-32 at% chromium at 470 °C. Scr Metall 16, 831836.CrossRefGoogle Scholar
Briggs, SA, Edmondson, PD, Littrell, KC, Yamamoto, Y, Howard, RH, Daily, CR, Terrani, KA, Sridharan, K & Field, KG (2017). A combined APT and SANS investigation of α′ phase precipitation in neutron-irradiated model FeCrAl alloys. Acta Mater 129, 217228.CrossRefGoogle Scholar
Bunton, JH, Olson, JD, Lenz, DR & Kelly, TF (2007). Advances in pulsed-laser atom probe: Instrument and specimen design for optimum performance. Microscopy and Microanalysis 13(6), 418427. doi: http://dx.doi.org/10.1017/S1431927607070869.CrossRefGoogle ScholarPubMed
Cautaerts, N, Delville, R, Stergar, E, Pakarinen, J, Verwerft, M, Yang, Y, Hofer, C, Schnitzer, R, Lamm, S, Felfer, P & Schryvers, D (2020). The role of Ti and TiC nanoprecipitates in radiation resistant austenitic steel: A nanoscale study. Acta Mater 197, 184197.CrossRefGoogle Scholar
Cerezo, A, Godfrey, TJ & Smith, GDW (1988). Application of a position-sensitive detector to atom probe microanalysis. Rev Sci Instrum 59, 862866.CrossRefGoogle Scholar
De Geuser, F & Gault, B (2020). Metrology of small particles and solute clusters by atom probe tomography. Acta Mater 188, 406415.CrossRefGoogle Scholar
Dethloff, C, Gaganidze, E & Aktaa, J (2014). Quantitative TEM analysis of precipitation and grain boundary segregation in neutron irradiated EUROFER97. J Nucl Mater 454, 323331.CrossRefGoogle Scholar
Devaraj, A, Perea, DE, Liu, J, Gordon, LM, Prosa, TJ, Parikh, P, Diercks, DR, Meher, S, Kolli, RP, Meng, YS & Thevuthasan, S (2018). Three-dimensional nanoscale characterisation of materials by atom probe tomography. Int Mater Rev 63, 68101.CrossRefGoogle Scholar
Dubuisson, P, Gilbon, D & Séran, JL (1993). Microstructural evolution of ferritic-martensitic steels irradiated in the fast breeder reactor Phénix. J Nucl Mater 205, 178189.CrossRefGoogle Scholar
Field, KG, Littrell, KC & Briggs, SA (2018). Precipitation of α′ in neutron irradiated commercial FeCrAl alloys. Scr Mater 142, 4145.CrossRefGoogle Scholar
Furusaka, M, Ishikawa, Y, Yamaguchi, S & Fujino, Y (1983). Spinodal decomposition in Fe-Cr alloys studied by small angle neutron scattering. Physica B+C 120, 383386.CrossRefGoogle Scholar
Gault, B, Moody, MP, Cairney, JM & Ringer, SP (2012). Atom Probe Microscopy. New York: Springer-Verlag. Available at https://www.springer.com/gp/book/9781461434351 (accessed July 26, 2020).CrossRefGoogle Scholar
Guinier, A, Fournet, G & Yudowitch, KL (1955). Small-Angle Scattering of X-Rays, 1st ed. New York: Wiley.Google Scholar
Hatzoglou, C, Radiguet, B, Da Costa, G, Pareige, P, Roussel, M, Hernandez-Mayoral, M & Pareige, C (2019). Quantification of APT physical limitations on chemical composition of precipitates in Fe–Cr alloys. J Nucl Mater 522, 6473.CrossRefGoogle Scholar
Heintze, C, Bergner, F, Ulbricht, A & Eckerlebe, H (2011). The microstructure of neutron-irradiated Fe–Cr alloys: A small-angle neutron scattering study. J Nucl Mater 409, 106111.CrossRefGoogle Scholar
Hellman, OC, du Rivage, JB & Seidman, DN (2003). Efficient sampling for three-dimensional atom probe microscopy data. Ultramicroscopy 95, 199205.CrossRefGoogle ScholarPubMed
Hyde, JM, Burke, MG, Smith, GDW, Styman, P, Swan, H & Wilford, K (2014). Uncertainties and assumptions associated with APT and SANS characterisation of irradiation damage in RPV steels. J Nucl Mater 449, 308314.CrossRefGoogle Scholar
Klueh, R & Harries, D (2001). High-Chromium Ferritic and Martensitic Steels for Nuclear Applications. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International. Available at http://www.astm.org/doiLink.cgi?MONO3-EB (accessed June 22, 2020).Google Scholar
Klueh, RL & Nelson, AT (2007). Ferritic/martensitic steels for next-generation reactors. J Nucl Mater 371, 3752.CrossRefGoogle Scholar
Kohyama, A, Hishinuma, A, Gelles, DS, Klueh, RL, Dietz, W & Ehrlich, K (1996). Low-activation ferritic and martensitic steels for fusion application. J Nucl Mater 233–237, 138147.CrossRefGoogle Scholar
Kuksenko, V, Pareige, C, Genevois, C, Cuvilly, F, Roussel, M & Pareige, P (2011). Effect of neutron-irradiation on the microstructure of a Fe–12 at%Cr alloy. J Nucl Mater 415, 6166.CrossRefGoogle Scholar
Kuksenko, V, Pareige, C & Pareige, P (2013). Cr precipitation in neutron irradiated industrial purity Fe–Cr model alloys. J Nucl Mater 432, 160165.CrossRefGoogle Scholar
Lake, JA (1967). An iterative method of slit-correcting small angle X-ray data. Acta Crystallogr 23, 191194.CrossRefGoogle Scholar
Larson, DJ, Maziasz, PJ, Kim, I-S & Miyahara, K (2001). Three-dimensional atom probe observation of nanoscale titanium-oxygen clustering in an oxide-dispersion-strengthened Fe-12Cr-3W-0.4Ti+Y2O3 ferritic alloy. Scr Mater 44, 359364.CrossRefGoogle Scholar
Li, Y, Shi, S, Zhu, L, Yan, Z, Huang, M & Maqbool, S (2019). Continuum separation of nanoscale phase in thermal aging Fe-Cr alloys: Phase-field simulation and experiment. JOM 71, 18031812.CrossRefGoogle Scholar
Lozano-Perez, S, Titchmarsh, JM & Jenkins, ML (2006). Quantitative EFTEM measurement of the composition of embedded particles. J Mater Sci 41, 43944404.CrossRefGoogle Scholar
Marquis, EA, Bachhav, M, Chen, Y, Dong, Y, Gordon, LM & McFarland, A (2013). On the current role of atom probe tomography in materials characterization and materials science. Curr Opin Solid State and Mater Sci 17, 217223.CrossRefGoogle Scholar
Marquis, EA & Hyde, JM (2010). Applications of atom-probe tomography to the characterisation of solute behaviours. Materials Science and Engineering: R: Reports 69(4-5), 3762. doi: http://dx.doi.org/10.1016/j.mser.2010.05.001.CrossRefGoogle Scholar
Marquis, EA & Vurpillot, F (2008). Chromatic aberrations in the field evaporation behavior of small precipitates. Microsc Microanal 14, 561570.CrossRefGoogle ScholarPubMed
Massey, CP, Zhang, D, Briggs, SA, Edmondson, PD, Yamamoto, Y, Gussev, MN & Field, KG (2021). Deconvoluting the effect of chromium and aluminum on the radiation response of wrought FeCrAl alloys after low-dose neutron irradiation. J Nucl Mater 549, 152804.CrossRefGoogle Scholar
Mathon, MH, de Carlan, Y, Geoffroy, G, Averty, X, Alamo, A & de Novion, CH (2003). A SANS investigation of the irradiation-enhanced αα′ phases separation in 7–12 Cr martensitic steels. J Nucl Mater 312, 236248.CrossRefGoogle Scholar
Mazumder, S, Sen, D, Saravanan, T & Vijayaraghavan, PR (2001). A medium resolution double crystal based small-angle neutron scattering instrument at Trombay. Curr Sci 81, 257262.Google Scholar
Meslin, E, Lambrecht, M, Hernández-Mayoral, M, Bergner, F, Malerba, L, Pareige, P, Radiguet, B, Barbu, A, Gómez-Briceño, D, Ulbricht, A & Almazouzi, A (2010). Characterization of neutron-irradiated ferritic model alloys and a RPV steel from combined APT, SANS, TEM and PAS analyses. J Nucl Mater 406, 7383.CrossRefGoogle Scholar
Miller, MK & Hetherington, MG (1991). Local magnification effects in the atom probe. Surf Sci 246, 442449.CrossRefGoogle Scholar
Miller, MK & Russell, KF (2007). Embrittlement of RPV steels: An atom probe tomography perspective. J Nucl Mater 371, 145160.CrossRefGoogle Scholar
Miller, MK, Stoller, RE & Russell, KF (1996). Effect of neutron-irradiation on the spinodal decomposition of Fe-32% Cr model alloy. J Nucl Mater 230, 219225.CrossRefGoogle Scholar
Novy, S, Pareige, P & Pareige, C (2009). Atomic scale analysis and phase separation understanding in a thermally aged Fe–20 at%Cr alloy. J Nucl Mater 384, 96102.CrossRefGoogle Scholar
Osamura, K, Okuda, H, Ochiai, S, Takashima, M, Asano, K, Furusaka, M, Kishida, K & Kurosawa, F (1994). Precipitation hardening in Fe-Cu binary and quaternary alloys. ISIJ Int 34, 359365.CrossRefGoogle Scholar
Pareige, C, Kuksenko, V & Pareige, P (2015). Behaviour of P, Si, Ni impurities and Cr in self ion irradiated Fe–Cr alloys – Comparison to neutron irradiation. J Nucl Mater 456, 471476.CrossRefGoogle Scholar
Pedersen, JS (1993). Small-angle scattering from precipitates: Analysis by use of a polydisperse hard-sphere model. Phys Rev B 47, 657665.CrossRefGoogle ScholarPubMed
Pedersen, JS (1994). Determination of size distribution from small-angle scattering data for systems with effective hard-sphere interactions. J Appl Crystallogr 27, 595608.CrossRefGoogle Scholar
Prakash Kolli, R & Seidman, DN (2008). The temporal evolution of the decomposition of a concentrated multicomponent Fe–Cu-based steel. Acta Mater 56, 20732088.CrossRefGoogle Scholar
Ribis, J & Lozano-Perez, S (2012). Orientation relationships and interface structure of α′-Cr nanoclusters embedded in α-Fe matrix after αα′ demixing in neutron irradiated oxide dispersion strengthened material. Mater Lett 74, 143146.CrossRefGoogle Scholar
Sarkar, SK, Ahlawat, S, Kaushik, SD, Babu, PD, Sen, D, Honecker, D & Biswas, A (2019). Magnetic ordering of the martensite phase in Ni–Co–Mn–Sn-based ferromagnetic shape memory alloys. J Phys: Condens Matter 32, 115801.Google ScholarPubMed
Sarkar, SK, Shinde, D, Das, A, Ray, D, Sen, D & Biswas, A (2021). Quantitative evaluation of spinodal decomposition in thermally aged binary Fe-35 at% Cr alloys by correlative atom probe tomography and small angle neutron scattering analyses. Materialia 15, 101014.CrossRefGoogle Scholar
Schneider, CA, Rasband, WS & Eliceiri, KW (2012). NIH image to ImageJ: 25 years of image analysis. Nat Methods 9, 671675.CrossRefGoogle ScholarPubMed
Shu, S, Wirth, BD, Wells, PB, Morgan, DD & Odette, GR (2018). Multi-technique characterization of the precipitates in thermally aged and neutron irradiated Fe-Cu and Fe-Cu-Mn model alloys: Atom probe tomography reconstruction implications. Acta Mater 146, 237252.CrossRefGoogle Scholar
Shull, CG & Wilkinson, MK (1955). Neutron diffraction studies of the magnetic structure of alloys of transition elements. Phys Rev 97, 304310.CrossRefGoogle Scholar
Simm, TH, Sun, L, Galvin, DR, Gilbert, EP, Alba Venero, D, Li, Y, Martin, TL, Bagot, PAJ, Moody, MP, Hill, P, Bhadeshia, HKDH, Birosca, S, Rawson, MJ & Perkins, KM (2017). A SANS and APT study of precipitate evolution and strengthening in a maraging steel. Mater Sci Eng A 702, 414424.CrossRefGoogle Scholar
Sunil, S, Kapoor, R, Sarkar, SK, Sarita, BA, Donthula, H & Sen, D (2021). Ultra-high strength steel made from AISI 304L using a novel thermo-mechanical processing technique. Acta Mater 221, 117379.CrossRefGoogle Scholar
Takahashi, J & Kawakami, K (2014). A quantitative model of preferential evaporation and retention for atom probe tomography. Surf Interface Anal 46, 535543.CrossRefGoogle Scholar
Takahashi, J, Kawakami, K & Raabe, D (2017). Comparison of the quantitative analysis performance between pulsed voltage atom probe and pulsed laser atom probe. Ultramicroscopy 175, 105110.CrossRefGoogle ScholarPubMed
Tissot, O, Pareige, C, Mathon, M-H, Roussel, M, Meslin, E, Décamps, B & Henry, J (2019). Comparison between SANS and APT measurements in a thermally aged Fe-19 at%Cr alloy. Mater Charact 151, 332341.CrossRefGoogle Scholar
Tsong, TT (1978). Field ion image formation. Surf Sci 70, 211233.CrossRefGoogle Scholar
Vurpillot, F, Bostel, A & Blavette, D (2000). Trajectory overlaps and local magnification in three-dimensional atom probe. Appl Phys Lett 76, 31273129.CrossRefGoogle Scholar
Vurpillot, F, Cerezo, A, Blavette, D & Larson, DJ (2004). Modeling image distortions in 3DAP. Microsc Microanal 10, 384390.CrossRefGoogle ScholarPubMed
Vurpillot, F & Oberdorfer, C (2015). Modeling atom probe tomography: A review. Ultramicroscopy 159, 202216.CrossRefGoogle ScholarPubMed
Westraadt, JE, Olivier, EJ, Neethling, JH, Hedström, P, Odqvist, J, Xu, X & Steuwer, A (2015). A high-resolution analytical scanning transmission electron microscopy study of the early stages of spinodal decomposition in binary Fe–Cr. Mater Charact 109, 216221.CrossRefGoogle Scholar
Williams, DB & Carter, CB (2009). Transmission Electron Microscopy: A Textbook for Materials Science, 2nd ed. 2009 edition. New York: Springer.CrossRefGoogle Scholar
Xu, X, Odqvist, J, Colliander, MH, Thuvander, M, Steuwer, A, Westraadt, JE, King, S & Hedström, P (2016). Structural characterization of phase separation in Fe-Cr: A current comparison of experimental methods. Metall Mater Trans A 47, 59425952.CrossRefGoogle Scholar
Xu, X, Wessman, S, Odqvist, J, King, SM & Hedström, P (2019). Nanostructure, microstructure and mechanical properties of duplex stainless steels 25Cr-7 Ni and 22Cr-5Ni (wt%) aged at 325°C. Mater Sci Eng A 754, 512520.CrossRefGoogle Scholar
Yang, Z, Wang, ZX, Xia, CH, Ouyang, MH, Peng, JC, Zhang, HW & Xiao, XS (2020). Aluminum suppression of α′ precipitate in model Fe–Cr–Al alloys during long-term aging at 475°C. Mater Sci Eng A 772, 138714.CrossRefGoogle Scholar
Zhang, Z, Liu, CT, Miller, MK, Wang, X-L, Wen, Y, Fujita, T, Hirata, A, Chen, M, Chen, G & Chin, BA (2013). A nanoscale co-precipitation approach for property enhancement of Fe-base alloys. Sci Rep 3, 1327.CrossRefGoogle ScholarPubMed
Zhou, J, Odqvist, J, Thuvander, M & Hedström, P (2013). Quantitative evaluation of spinodal decomposition in Fe-Cr by atom probe tomography and radial distribution function analysis. Microsc Microanal 19, 665675.CrossRefGoogle ScholarPubMed
Supplementary material: File

Sarkar et al. supplementary material

Sarkar et al. supplementary material

Download Sarkar et al. supplementary material(File)
File 1.4 MB