Published online by Cambridge University Press: 30 July 2012
Determining correlated major and trace element zoning profiles is an important goal in modern microanalysis and is critical to some geospeedometric applications. We show that a precise determination of relative variations in major element compositions of simple solid solutions is possible by LA-ICPMS, and that low accuracy (analytical bias) can be corrected for through cross correlation with electron problem microanalyzer (EPMA)-characterized working standards. Further, the relative uncertainties on binary or quasibinary solid solution endmember proportions are always lower than the relative uncertainties on the ratio of the principle substituting elements by at least a factor of 2. In calcic plagioclase, for example, the relative uncertainty on XAn is a factor of (1 − XAn) smaller than the relative uncertainty on Ca/Na. Using a well-characterized, concentrically zoned bytownite crystal as an example, we compare reproducibilities of FE-EPMA and W-EPMA analyses with 2 μm beam diameter and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) with 16 μm beam diameter. While the accuracy of LA-ICP-MS analyses is low (analytical bias), the precision of LA-ICP-MS analyses is slightly higher than that of FE-EPMA data and comparable to that of the W-EPMA data. EPMA-corrected LA-ICP-MS data can thus be used to characterize major oxide compositional variations and potential covariations with trace elements within individual crystals.