Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-28T12:41:52.340Z Has data issue: false hasContentIssue false

Contrast Transfer and Resolution Limits for Sub-Angstrom High-Resolution Transmission Electron Microscopy

Published online by Cambridge University Press:  21 December 2007

Markus Lentzen
Affiliation:
Institute of Solid State Research, Ernst Ruska Centre for Microscopy and Spectroscopy with Electrons, Research Centre Jülich, 52425 Jülich, Germany
Get access

Abstract

The optimum imaging of an object structure at the sub-angstrom length scale requires precise adjustment of the lens aberrations of a high-resolution instrument up to the fifth order. A least-squares optimization of defocus aberration C1, third-order spherical aberration C3, and fifth-order spherical aberration C5 yields two sets of aberration coefficients for strong phase contrast up to the information limit: one for variable C1 and C3, at fixed C5, another for variable C1, C3, and C5. An additional correction to the defocus aberration, dependent on object thickness, is described, which becomes important for the use of image simulation programs in predicting optimum high-resolution contrast from thin objects at the sub-angstrom scale. For instruments with a sub-angstrom information limit the ultimate structure resolution, the power to resolve adjacent atom columns in a crystalline object, depends on both the instrumental pointspread and an object pointspread due to finite width of the atomic column potentials. A simulation study on a simple double-column model yields a range for structure resolutions, dependent on the atomic scattering power, from 0.070 nm down to 0.059 nm, for a hypothetical 300-kV instrument with an information limit of 0.050 nm.

Type
Research Article
Copyright
© 2008 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Benner, G., Matijevic, M., Orchowski, A., Schindler, B., Haider, M. & Hartel, P. (2003). State of the first aberration-corrected, monochromized 200 kV FEG-TEM. Microsc Microanal 9(Suppl. 2), 938939.Google Scholar
Bethe, H. (1928). Theorie der Beugung von Elektronen an Kristallen. Annalen der Physik 87, 55129.Google Scholar
Bonhomme, P. & Beorchia, A. (1983). The specimen thickness effect upon electron microscope image contrast transfer of amorphous objects. J Phys D Appl Phys 16, 705713.Google Scholar
Chang, L.Y., Kirkland, A.I. & Titchmarsh, J.M. (2006). On the importance of fifth-order spherical aberration for a fully corrected electron microscope. Ultramicroscopy 106, 301306.Google Scholar
Coene, W. & Jansen, A.J.E.M. (1992). Image delocalisation and high resolution transmission electron microscopic imaging with a field emission gun. Scan Microsc 6(Suppl.), 379403.Google Scholar
Coene, W., Janssen, G., Op de Beeck, M. & Van Dyck, D. (1992). Phase retrieval through focus variation for ultra-resolution in field-emission transmission electron microscopy. Phys Rev Lett 69, 37433746.Google Scholar
Cowley, J.M. & Moodie, A.F. (1957). The scattering of electrons by atoms and crystals. I. A new theoretical approach. Acta Cryst 10, 609619.Google Scholar
Freitag, B., Kujawa, S., Mul, P.M., Ringnalda, J. & Tiemeijer, P.C. (2005). Breaking the spherical and chromatic aberration barrier in transmission electron microscopy. Ultramicroscopy 102, 209214.Google Scholar
Fujimoto, F. (1978). Periodicity of crystal structure images in electron microscopy with crystal thickness. Phys Status Solidi A 45, 99106.Google Scholar
Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B. & Urban, K. (1998). Electron microscopy image enhanced. Nature 392, 768769.Google Scholar
Jia, C.L., Lentzen, M. & Urban, K. (2003). Atomic-resolution imaging of oxygen in perovskite ceramics. Science 299, 870873.Google Scholar
Jia, C.L., Lentzen, M. & Urban, K. (2004). High-resolution transmission electron microscopy using negative spherical aberration. Microsc Microanal 10, 174184.Google Scholar
Jia, C.L. & Urban, K. (2004). Atomic-resolution measurement of oxygen concentration in oxide materials. Science 303, 20012004.Google Scholar
Kambe, K., Lehmpfuhl, G. & Fujimoto, G. (1974). Interpretation of electron channeling by the dynamical theory of electron diffraction. Z Naturforsch A 29, 10341044.Google Scholar
Kisielowski, C., Hetherington, C.J.D., Wang, Y.C., Kilaas, R., O'Keefe, M.A. & Thust, A. (2001). Imaging columns of the light elements carbon, nitrogen and oxygen with sub Ångstrom resolution. Ultramicroscopy 89, 243263.Google Scholar
Lentzen, M. (2004). The tuning of a Zernike phase plate with defocus and variable spherical aberration and its use in HRTEM imaging. Ultramicroscopy 99, 211220.Google Scholar
Lentzen, M., Jahnen, B., Jia, C.L., Thust, A., Tillmann, K. & Urban, K. (2002). High-resolution imaging with an aberration–corrected transmission electron microscope. Ultramicroscopy 92, 233242.Google Scholar
Lichte, H. (1986). Electron holography approaching atomic resolution. Ultramicroscopy 20, 293304.Google Scholar
Lichte, H. (1991). Optimum focus for taking holograms. Ultramicroscopy 38, 1322.Google Scholar
O'Keefe, M.A. (2000). The optimum CS condition for high-resolution transmission electron microscopy. Microsc Microanal 6, 10361037.Google Scholar
O'Keefe, M.A., Allard, L.F. & Blom, D.A. (2005). HRTEM imaging of atoms at sub-Ångström resolution. J Electron Microsc 54, 169180.Google Scholar
O'Keefe, M.A., Dahmen, U. & Hetherington, C.J.D. (1989). Simulated image maps for use in experimental high-resolution electron microscopy. Mat Res Soc Sym Proc 159, 453458.Google Scholar
O'Keefe, M.A., Hetherington, C.J.D., Wang, Y.C., Nelson, E.C., Turner, J.H., Kisielowski, C., Malm, J.-O., Mueller, R., Ringnalda, J., Pan, M. & Thust, A. (2001). Sub-ångstrom high-resolution transmission electron microscopy at 300 kV. Ultramicroscopy 89, 215241.Google Scholar
O'Keefe, M.A. & Kilaas, R. (1988). Advances in high-resolution image simulation. Scan Microsc 2(Suppl.), 225244.Google Scholar
Rose, H. (1989). Bildenstehung im Elektronenmikroskop. Lecture at Technical University Darmstadt, 183 pages.
Rose, H. (1990). Outline of a spherically corrected semiaplanatic medium-voltage transmission electron microscope. Optik 85, 1924.Google Scholar
Scherzer, O. (1949). The theoretical resolution limit of the electron microscope. J Appl Phys 20, 2029.Google Scholar
Scherzer, O. (1970). Die Strahlenschädigung der Objekte als Grenze für die hochauflösende Elektronenmikroskopie. Berichte der Bunsengesellschaft 74, 11541167.Google Scholar
Scherzer, O. & Typke, D. (1967). Die Auflösungsgrenze eines in zwei Schnitten sphärisch korrigierten Objektivs. Optik 26, 564573.Google Scholar
Smith, D.J., Saxton, W.O., O'Keefe, M.A., Wood, G.J. & Stobbs, W.M. (1983). The importance of beam alignment and crystal tilt in high resolution electron microscopy. Ultramicroscopy 11, 263281.Google Scholar
Stadelmann, P.A. (1987). EMS—A software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21, 131145.Google Scholar
Thust, A., Coene, W.M.J., Op de Beeck, M. & Van Dyck, D. (1996). Focal-series reconstruction in HRTEM: Simulation studies on non-periodic objects. Ultramicroscopy 64, 211230.Google Scholar
Tillmann, K., Thust, A. & Urban, K. (2004). Spherical aberration correction in tandem with exit-plane wave function reconstruction: Interlocking tools for the atomic scale imaging of lattice defects in GaAs. Microsc Microanal 10, 185198.Google Scholar
Van Dyck, D. & de Jong, A.F. (1992). Ultimate resolution and information in electron microscopy: General principles. Ultramicroscopy 47, 266281.Google Scholar
Van Dyck, D., Op de Beeck, M. & Coene, W. (1992). Information in electron microscopy. In Image Interpretation and Image Processing in Electron Microscopy, Heydenreich, J. & Neumann, W. (Eds.), pp. 631. Halle/Saale, Germany: Max Planck Institute for Microstructure Physics.
Van Dyck, D., Van Aert, S. & den Dekker, A.J. (2004). Physical limits on atomic resolution. Microsc Microanal 10, 153157.Google Scholar
Zernike, F. (1942a). Phase contrast, a new method for the microscopic observation of transparent objects, Part I. Physica 9, 686698.Google Scholar
Zernike, F. (1942b). Phase contrast, a new method for the microscopic observation of transparent objects, Part II. Physica 9, 974986.Google Scholar
Zernike, F. (1955). How I discovered phase contrast. Science 121, 345349.Google Scholar