Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-13T01:45:36.843Z Has data issue: false hasContentIssue false

Convolutional Neural Network as a Solution to Segment and Classify High Resolution TEM Images to Obtain 3D Information

Published online by Cambridge University Press:  22 July 2022

M. Leibovich
Affiliation:
Courant Institute of Mathematical Sciences and Center for Data Science, New York University, New York, NY, United States
R. Manzorro
Affiliation:
School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona, United States
Mai Tan
Affiliation:
School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona, United States
S. Mohan
Affiliation:
Courant Institute of Mathematical Sciences and Center for Data Science, New York University, New York, NY, United States
Adrià Marcos-Morales
Affiliation:
Courant Institute of Mathematical Sciences and Center for Data Science, New York University, New York, NY, United States
C. Fernandez-Granda
Affiliation:
Courant Institute of Mathematical Sciences and Center for Data Science, New York University, New York, NY, United States
P. A. Crozier*
Affiliation:
School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona, United States
*
*Corresponding author: crozier@asu.edu

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Artificial Intelligence, Instrument Automation, And High-dimensional Data Analytics for Microscopy and Microanalysis
Copyright
Copyright © Microscopy Society of America 2022

References

Van Aert, S et al. , Nature 470 (2011), p. 374. doi: 10.1038/nature09741CrossRefGoogle Scholar
Li, ZY et al. , Nature 451 (2008), p. 46. doi: 10.1038/nature06470CrossRefGoogle Scholar
LeCun, Y, Bengio, Y and Hinton, G, Nature 521 (2015), p. 436. doi: 10.1038/nature14539CrossRefGoogle Scholar
Madsen, J et al. , Adv. Theory and Sim. 1 (2018), p. 1800037. doi: /10.1002/adts.201800037CrossRefGoogle Scholar
Ragone, et al. , Comp. Mat. Science (2020), p. 109722. doi: 10.1016/j.commatsci.2020.109722CrossRefGoogle Scholar
Manzorro, R et al. , Microsc. Microanal. 27 (2021), p. 464. doi: 10.1017/S1431927621002154CrossRefGoogle Scholar
The authors acknowledge funding from NSF (DMR 1840841, OAC 1940263 HDR 1940097, OAC 2103936, HDR 1922658), the Simons Foundation, and the use of facilities of Eyring Materials Center at Arizona State University.Google Scholar