We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Type
Quantum Materials Probed by High Spatial and Energy Resolution in Scanning/Transmission Electron Microscopy
Seo, J. et al. Nearly room temperature ferromagnetism in a magnetic metal-rich van der Waals metal. Sci. Adv. (2020). doi:10.1126/sciadv.aay8912Google Scholar
2
Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature (2017). doi:10.1038/nature22060CrossRefGoogle ScholarPubMed
3
Jollife, I. T. & Cadima, J.Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences (2016). doi:10.1098/rsta.2015.0202CrossRefGoogle Scholar
4
Somnath, S. et al. Feature extraction via similarity search: application to atom finding and denoising in electron and scanning probe microscopy imaging. Adv. Struct. Chem. Imaging (2018). doi:10.1186/s40679-018-0052-yCrossRefGoogle ScholarPubMed
5
Mukherjee, D., Miao, L., Stone, G. & Alem, N. mpfit: a robust method for fitting atomic resolution images with multiple Gaussian peaks. Adv. Struct. Chem. Imaging (2020). doi:10.1186/s40679-020-0068-yCrossRefGoogle Scholar
6
Kalinin, V., Dyck, S., Jesse, O., S. & Ziatdinov, M. Machine learning of chemical transformations in the Si-graphene system from atomically resolved images via variational autoencoder. arXiv Prepr. arXiv2006.10267 1–20 (2020).Google Scholar
7
L.M. and N.A.'s work supported by the Penn State Center for Nanoscale Sciences, an NSF MRSEC under the grant number DMR-140620.Google Scholar