Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-10T08:42:42.787Z Has data issue: false hasContentIssue false

Density Functional Theory Modeling of Low-Loss Electron Energy-Loss Spectroscopy in Wurtzite III-Nitride Ternary Alloys

Published online by Cambridge University Press:  12 February 2016

Alberto Eljarrat*
Affiliation:
Laboratory of Electron NanoScopies, LENS-MIND-IN2UB, Departament d’Electrόnica, Universitat de Barcelona, Marti i Franqués 1, 08028 Barcelona, Spain
Xavier Sastre
Affiliation:
Laboratory of Electron NanoScopies, LENS-MIND-IN2UB, Departament d’Electrόnica, Universitat de Barcelona, Marti i Franqués 1, 08028 Barcelona, Spain
Francesca Peiró
Affiliation:
Laboratory of Electron NanoScopies, LENS-MIND-IN2UB, Departament d’Electrόnica, Universitat de Barcelona, Marti i Franqués 1, 08028 Barcelona, Spain
Sónia Estradé
Affiliation:
Laboratory of Electron NanoScopies, LENS-MIND-IN2UB, Departament d’Electrόnica, Universitat de Barcelona, Marti i Franqués 1, 08028 Barcelona, Spain
*
*Corresponding author. aeljarrat@el.ub.edu
Get access

Abstract

In the present work, the dielectric response of III-nitride semiconductors is studied using density functional theory (DFT) band structure calculations. The aim of this study is to improve our understanding of the features in the low-loss electron energy-loss spectra of ternary alloys, but the results are also relevant to optical and UV spectroscopy results. In addition, the dependence of the most remarkable features with composition is tested, i.e. applying Vegard’s law to band gap and plasmon energy. For this purpose, three wurtzite ternary alloys, from the combination of binaries AlN, GaN, and InN, were simulated through a wide compositional range (i.e., AlxGa1−xN, InxAl1−xN, and InxGa1−xN, with x=[0,1]). For this DFT calculations, the standard tools found in Wien2k software were used. In order to improve the band structure description of these semiconductor compounds, the modified Becke–Johnson exchange–correlation potential was also used. Results from these calculations are presented, including band structure, density of states, and complex dielectric function for the whole compositional range. Larger, closer to experimental values, band gap energies are predicted using the novel potential, when compared with standard generalized gradient approximation. Moreover, a detailed analysis of the collective excitation features in the dielectric response reveals their compositional dependence, which sometimes departs from a linear behavior (bowing). Finally, an advantageous method for measuring the plasmon energy dependence from these calculations is explained.

Type
Papers from the 4th Joint Congress of the Portuguese and Spanish Microscopy Societies
Copyright
Copyright © Microscopy Society of America 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abt, R., Ambrosch-Draxl, C. & Knoll, P. (1994). Optical response of high temperature superconductors by full potential LAPW band structure calculations. Physica B Condens Matter 194, 14511452.Google Scholar
Amari, H., Zhang, H., Geelhaar, L., Chèze, C., Kappers, M. & Walther, T. (2011). Nanoscale EELS analysis of elemental distribution and band-gap properties in AlGaN epitaxial layers. J Phys Conf Ser 326, 012039.Google Scholar
Ambrosch-Draxl, C. & Sofo, J.O. (2006). Linear optical properties of solids within the full-potential linearized augmented planewave method. Comput Phys Commun 175(1), 114.Google Scholar
Benassi, A. (2008). Role of the vacuum fluctuation forces in microscopic systems. PhD Thesis. Università degli studi di Modena e Reggio Emilia.Google Scholar
Blaha, P., Schwarz, K., Madsen, G.K.H., Kvasnicka, D. & Luitz, J. (2001). WIEN2K, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties. Austria: Karlheinz Schwarz, Technische Universität Wien, Modena, Italy.Google Scholar
de la Peña, F., Burdet, P., Sarahan, M., Nord, M., Ostasevicius, T., Taillon, J., Eljarrat, A., Mazzucco, S., Fauske, V.T., Donval, G., Zagonel, L.F., Iyengar, I. & Walls, M. (2015). Hyperspy 0.8.2, Zenodo 10.5281/zenodo.28025.Google Scholar
Dridi, Z., Bouhafs, B. & Ruterana, P. (2003). First-principles investigation of lattice constants and bowing parameters in wurtzite AlxGa1−xN, InxGa1−xN, InxAl1−xN. Semicond Sci Technol 18(9), 850.Google Scholar
Egerton, R. F. (2011). Electron Energy-Loss Spectroscopy in the Electron Microscope. 3rd edition. Springer USA, New York.Google Scholar
Eljarrat, A., Estradé, S., Gačević, Z., Fernández-Garrido, S., Calleja, E., Magén, C. & Peiró, F. (2012). Optoelectronic properties of InAlN/GaN distributed Bragg reflector heterostructure examined by valence electron energy loss spectroscopy. Microsc Microanal 18, 11431154.Google Scholar
Eljarrat, A., López-Conesa, L., Magén, C., Gačević, Z., Fernández-Garrido, S., Calleja, E., Estradé, S. & Peiró, F. (2013). Insight into the compositional and structural nano features of AlN/GaN DBRs by EELS-HAADF. Microsc Microanal 19(3), 698705.Google Scholar
Gian, W., Skowronski, M. & Rohrer, G.S. (1996). Structural defects and their relationship to nucleation of GaN thin films. Symposium E—III-Nitride, SiC, and Diamond Materials for Electronic, MRS Proceedings, vol. 423. April 4–12, 1996, San Francisco, CA, USA.Google Scholar
Hohenberg, P. & Kohn, W. (1964). Inhomogeneous electron gas. Phys Rev 136, B864B871.Google Scholar
Holec, D., Costa, P., Cherns, P. & Humphreys, C. (2008 a). Electron energy loss near edge structure (ELNES) spectra of AlN and AlGaN: A theoretical study using the Wien2k and Telnes programs. Micron 39 (6), 690–697.Google Scholar
Holec, D., Costa, P., Cherns, P. & Humphreys, C. (2008 b). A theoretical study of {ELNES} spectra of AlxGa1xN using Wien2k and Telnes programs. Comput Mater Sci 44(1), 9196.Google Scholar
Iliopoulos, E., Adikimenakis, A., Giesen, C., Heuken, M. & Georgakilas, A. (2007). Energy bandgap bowing of InAlN alloys studied by spectroscopic ellipsometry. Appl Phys Lett 92, 191907191910.Google Scholar
Jiang, H. (2013). Band gaps from the Tran-Blaha modified Becke-Johnson approach: A systematic investigation. J Chem Phys 138(13), 134115.Google Scholar
Keast, V. (2005). Ab initio calculations of plasmons and interband transitions in the low-loss electron energy-loss spectrum. J Electron Spectros Relat Phenomena 143, 97104.10.1016/j.elspec.2004.04.005Google Scholar
Keast, V. (2013). An introduction to the calculation of valence EELS: Quantum mechanical methods for bulk solids. Micron 44, 93100.Google Scholar
Keast, V. & Bosman, M. (2008). Applications and theoretical simulation of low-loss electron energy-loss spectra. Mater Sci Technol 24(6), 651659.Google Scholar
Keast, V.J., Kappers, M.J. & Humphreys, C.J. (2003). Electron energy-loss near edge structure (ELNES) of InGaN quantum wells. J Microsc 210(1), 8993.10.1046/j.1365-2818.2003.01180.xGoogle Scholar
Keast, V.J., Scott, A.J., Kappers, M.J., Foxon, C.T. & Humphreys, C.J. (2002). Electronic structure of GaN and InxGa1−xN measured with electron energy-loss spectroscopy. Phys Rev B 66, 125319.Google Scholar
Kohn, W. & Sham, L.J. (1965). Self-consistent equations including exchange and correlation effects. Phys Rev 140, A1133A1138.Google Scholar
Kokalj, A. (2003). Computer graphics and graphical user interfaces as tools in simulations of matter at the atomic scale. Comput Mater Sci 28, 155168.Google Scholar
Koller, D., Tran, F. & Blaha, P. (2011). Merits and limits of the modified Becke-Johnson exchange potential. Phys Rev B 83, 195134.Google Scholar
Laref, A., Altujar, A. & Luo, S. (2013). The electronic and optical properties of InGaN-based solar cells alloys: First-principles investigations via mBJLDA approach. Eur Phys J B 86(11), 475486.Google Scholar
Letrouit, A., Kret, S., Ivaldi, F., Carlin, J.F., Kaufman, N.A.K., Grandjean, N. & Góreka, J. (2012). Low loss EEL spectroscopy performed on InxA1−xN layers grown by MOVPE: Comparison between experiment and ab-initio calculations. Phys Status Solidi C 9(3–4), 989992.Google Scholar
Levinshtein, M., Rumyantsev, S. & Shur, M. (2001). Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe. London: Wiley. A Wiley-Interscience Publication.Google Scholar
Palisaitis, J., Hsiao, C.-L., Junaid, M., Birch, J., Hultman, L. & Persson, P.O.A. (2011 a). Effect of strain on low-loss electron energy loss spectra of group-III nitrides. Phys Rev B 84, 245301.Google Scholar
Palisaitis, J., Hsiao, C.-L., Junaid, M., Xie, M., Darakchieva, V., Carlin, J.-F., Grandjean, N., Birch, J., Hultman, L. & Persson, P.O.A. (2011 b). Standard-free composition measurements of AlxIn1−xN by low-loss electron energy loss spectroscopy. Phys Status Solidi Rapid Res Lett 5(2), 5052.Google Scholar
Perdew, J.P., Burke, K. & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Phys Rev Lett 77, 38653868.Google Scholar
Potapov, P.L., Engelmann, H.-J., Zschech, E. & Stöger-Pollach, M. (2009). Measuring the dielectric constant of materials from valence EELS. Micron 40(2), 262268.Google Scholar
Ritchie, R. (1957). Plasma losses by fast electrons in thin films. Phys Rev 106(5), 874.Google Scholar
Soumelidou, M., Kioseoglou, J., Kirmse, H., Karakostas, T. & Komninou, P. (2013). Electron energy loss near edge structure of InxAl1−xN alloys. Microelectron Eng 112, 198203.Google Scholar
Stöger-Pollach, M. (2008). Optical properties and bandgaps from low loss EELS: Pitfalls and solutions. Micron 39(8), 10921110.Google Scholar
Teter, D.M., Gibbs, G.V., Boisen, M.B., Allan, D.C. & Teter, M.P. (1995). First-principles study of several hypothetical silica framework structures. Phys Rev B 52, 80648073.Google Scholar
Tran, F. & Blaha, P. (2009). Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys Rev Lett 102, 226401.Google Scholar
Ul Haq, B., Ahmed, R., Shaari, A., El Haj Hassan, F., Benali Kanoun, M. & Goumri-Said, S. (2014). Study of wurtzite and zincblende GaN/InN based solar cells alloys: First-principles investigation within the improved modified Becke-Johnson potential. Solar Energy 107, 543552.Google Scholar
Vurgaftman, I., Meyer, J.R. & Ram-Mohan, L.R. (2001). Band parameters for III-V compound semiconductors and their alloys. J Appl Phys 89(11), 58155875.Google Scholar
Wang, Y. & Perdew, J.P. (1991). Spin scaling of the electron-gas correlation energy in the high-density limit. Phys Rev B 43, 89118916.Google Scholar
Yu, P. & Cardona, M. (2010). Fundamentals of Semiconductors: Physics and Materials Properties. Graduate Texts in Physics. New York: Springer.Google Scholar
Supplementary material: File

Eljarrat supplementary material

Eljarrat supplementary material 1

Download Eljarrat supplementary material(File)
File 1.4 MB