Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-07T11:02:43.119Z Has data issue: false hasContentIssue false

Detecting Thermally Induced Spinodal Decomposition with Picosecond Ultrasonics in Cast Austenitic Stainless Steels

Published online by Cambridge University Press:  30 July 2020

Saleem Al Dajani
Affiliation:
Mesoscale Nuclear Materials Group, Short Lab, NSE, MIT Nuclear Engineering, University of California Berkeley, Cambridge, Massachusetts, United States
Benjamin Dacus
Affiliation:
MIT, Cambridge, Massachusetts, United States
Cody Dennett
Affiliation:
Idaho National Laboratory, Cambridge, Massachusetts, United States
M. Grace Burke
Affiliation:
University of Manchester, Manchester, Lancashire, England, United Kingdom
Aljazzy Alahmadi
Affiliation:
MIT, Cambridge, Massachusetts, United States
Kudzanai Mukahiwa
Affiliation:
Manchester University, Manchester, Lancashire, England, United Kingdom
Kuba Anglin
Affiliation:
University of Santa Cruz, Santa Cruz, California, United States
James Wall
Affiliation:
Electric Power Research Institute (EPRI), Charlotte, North Carolina, United States
Thak Sang Byun
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
Michael Short
Affiliation:
MIT, Cambridge, Massachusetts, United States

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Advanced Characterization of Nuclear Fuels and Materials
Copyright
Copyright © Microscopy Society of America 2020

References

Danoix, F., Auger, P., and Blavette, D.. Microscopy and Microanalysis 10.3 (2004)10.1017/S1431927604040516CrossRefGoogle Scholar
Tang, H. T. “Materials Reliability Program: PWR Internals Material Aging Degradation Mechanism Screening and Threshold Values (MRP-175).” (2005).Google Scholar
Andresen, P. L., et al. Expert Panel Report on Proactive Materials Degradation Assessment (PMDA). 2006.Google Scholar
Busby, Jeremy T., et al. ORNL Report, ORNL/TM-2008/170 (2008)Google Scholar
Johnson, Jeremy A., et al. Journal of Applied Physics 111.2 (2012)Google Scholar
Virkkunen, Iikka, Kull, Doug, and Kemppainen, Mika. ASME 2012 Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2012.Google Scholar
Hofmann, F., et al. Acta Materialia 89 (2015)10.1016/j.actamat.2015.01.055CrossRefGoogle Scholar
Short, Michael P., et al. JOM 67.8 (2015)10.1007/s11837-015-1496-3CrossRefGoogle Scholar
Chopra, O. K., and S, A.. Rao. Journal of Pressure Vessel Technology 138.4 (2016)Google Scholar
Dennett, Cody A., et al. Physical Review B 94.21 (2016)10.1103/PhysRevB.94.214106CrossRefGoogle Scholar
Duncan, R. A., et al. Applied Physics Letters 109.15 (2016)Google Scholar
Byun, T. S., et al. JOM 68.2 (2016)10.1007/s11837-015-1709-9CrossRefGoogle Scholar
Dennett, Cody A., and Michael, P. Short. Applied Physics Letters 110.21 (2017)Google Scholar
Du, Xinpeng, , and Ji-Cheng Zhao, . Computational Materials 3.1 (2017)Google Scholar
Dennett, C. A., et al. Acta Materialia 145 (2018)10.1016/j.actamat.2017.12.007CrossRefGoogle Scholar
Dennett, Cody A., and Short, Michael P.. Journal of Applied Physics 123.21 (2018): 215109.10.1063/1.5026429CrossRefGoogle Scholar
Short, M. P. Invited Talk, July 2018.Google Scholar
Al Dajani, Saleem et al. Proc. Env. Deg. 2019.10.21820/23987073.2019.1.50CrossRefGoogle Scholar
Al Dajani, Saleem et al. MiNES Technical Session, 2019.Google Scholar