Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-28T15:30:00.707Z Has data issue: false hasContentIssue false

Detection of Protein Structure of Frozen Ancient Human Remains Recovered from a Glacier in Canada Using Synchrotron Fourier Transform Infrared Microspectroscopy

Published online by Cambridge University Press:  07 May 2013

Luca Quaroni
Affiliation:
Paul Scherrer Institut, Villigen-PSI CH-5232, Switzerland
Colleen R. Christensen
Affiliation:
College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, CanadaS7N 5A8
Becky Chen
Affiliation:
Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, CanadaV6T 1Z3
Wayne Vogl
Affiliation:
Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, CanadaV6T 1Z3
Maria Victoria Monsalve*
Affiliation:
Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, CanadaV6T 1Z3
*
*Corresponding author. E-mail: vmonsalve@pathology.ubc.ca
Get access

Abstract

We previously used synchrotron infrared microspectroscopy to describe the biochemical signature of skeletal muscle (biceps brachii) from the frozen ancient remains of a young man. In this current paper, we use light microscopy to assess the state of preservation of cellular components in the trapezius muscle from these same ancient remains and then use mid-infrared analysis at the Canadian Light Source synchrotron facility to further analyze the tissue. We compare spectra between the trapezius samples from the ancient remains and a recently deceased cadaver (control). Infrared spectra indicate preservation of secondary structure, with the α-helix being the principal component, along with triple helical portions of the protein backbone. Our mid-infrared analysis indicates an energy reserve in the skeletal muscle in the ancient remains.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barth, A. (2007). Infrared spectroscopy of proteins. Biochim Biophys Acta 1767, 10731101.CrossRefGoogle ScholarPubMed
Beattie, O., Apland, B., Blake, E.W., Cosgrove, J.A., Gaunt, S., Greer, S., Mackie, A.P., Mackie, K.E., Straathof, D., Thorp, V. & Troffe, P.M. (2000). The Kwäday Dän Ts'ínchi discovery from a glacier in British Columbia. Can J Archeol 24, 129147.Google Scholar
Chiriboga, L., Yee, H. & Diem, M. (2000). Infrared spectroscopy of human cells and tissue. Part VII: FT-IR microspectroscopy of DNase- and RNase-treated normal, cirrhotic, and neoplastic liver tissue. Appl Spectrosc 54, 480485.CrossRefGoogle Scholar
Christensen, C., Jackson, M., Zhao, J., Vogl, W. & Monsalve, M.V. (2011). Synchrotron mid-infrared analysis of the Kwädāy Dän Ts'ínchi ancient remains found in a glacier in Canada. In Yearbook of Mummy Studies, Gill-Frerking, H., Rosendahl, W., Zink, A. & Piombino-Mascali, D. (Eds.), pp. 115119. München, Germany: Verlag Dr. Friedrich Pfeil.Google Scholar
Diem, M., Griffiths, P.R. & Chalmers, J.M. (2008). Vibrational Spectroscopy for Medical Diagnosis. Chichester, UK: John Wiley & Sons.Google Scholar
Gazi, E., Dwyer, J., Lockyer, N.P., Miyan, J., Gardner, P., Hart, C., Brown, M. & Clarke, N.W. (2005). Fixation protocols for subcellular imaging by synchrotron-based Fourier transform infrared microspectroscopy. Biopolymers 77, 1830.CrossRefGoogle ScholarPubMed
Liu, C., Park, H.M., Monsalve, M.V. & Chen, D.D.Y. (2010). Free fatty acids composition in adipocere of the Kwäday Dän Ts'ínchi ancient remains found in a glacier. J Forensic Sci 55, 10391043.CrossRefGoogle Scholar
Miller, L.M., Smith, G.D. & Carr, G.L. (2003). Synchrotron-based biological microspectroscopy: From the mid-infrared through the far-infrared regimes. J Biol Phys 29, 219230.CrossRefGoogle ScholarPubMed
Monsalve, M.V., Humphrey, E., Walker, D.C., Cheung, C., Vogl, W. & Nimmo, M. (2008). Brief communication: State of preservation of tissues from ancient human remains found in a glacier in Canada. Am J Phys Anthropol 137, 348355.CrossRefGoogle Scholar
Monsalve, M.V., Stone, A.C., Lewis, C.M., Rempel, A., Richards, M., Straathof, D. & Devine, D.V. (2002). Brief communication: Molecular analysis of the Kwäday Dän Ts'ìnchi ancient remains found in a glacier in Canada. Am J Phys Anthropol 119, 288291.CrossRefGoogle Scholar
Monsalve, M.V., Stone, A.C., Lewis, C.M., Rempel, A., Richards, M., Straathof, D. & Devine, D.V. (2003). mTDNA analysis of human ancient remains found in a glacier in Canada in 1999 in mummies in a new millennium. In 4th World Congress on Mummy Studies, Llynnerup, N., Anderasen, C. & Berglund, J. (Eds.), pp. 128130. Nuuk: Greenland National Museum and Archive and Danish Polar Center.Google Scholar
Nielsen, J., Holmberg, H.-C., Schroder, H.D., Saltin, B. & Ortenblad, N. (2011). Human skeletal muscle glycogen utilization in exhaustive exercise: Role of subcellular localization and fibre type. J Physiol 589, 28712885.CrossRefGoogle ScholarPubMed
Obinata, T., Maruyama, K., Sugita, H., Kohama, K. & Ebashi, S. (1981). Dynamic aspects of structural proteins in vertebrate skeletal muscle. Muscle Nerve 4, 456488.CrossRefGoogle ScholarPubMed
Petibois, C., Gouspillou, G., Wehbe, K., Delage, J.P. & Deleris, G. (2006). Analysis of type I and IV collagens by FT-IR spectroscopy and imaging for a molecular investigation of skeletal muscle connective tissue. Anal Bioanal Chem 386, 19611966.CrossRefGoogle ScholarPubMed
Polson, C.J. (1965). The Essentials of Forensic Medicine. New York: Pergamon Press.Google Scholar
Tamm, L.K. & Tatulian, S.A. (1997). Infrared spectroscopy of proteins and peptides in lipid bilayers. Q Rev Biophys 30, 365429.CrossRefGoogle ScholarPubMed