Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T16:01:56.407Z Has data issue: false hasContentIssue false

Detector Solid Angle Formulas for Use in X-Ray Energy Dispersive Spectrometry

Published online by Cambridge University Press:  16 March 2009

Nestor J. Zaluzec*
Affiliation:
Argonne National Laboratory, Electron Microscopy Center, Materials Science Division Bldg. 212, 9700 S. Cass Ave., Argonne, IL 60439
Get access

Abstract

With the advent of silicon drift X-ray detectors, a range of new geometries has become possible in electron optical columns. Because of their compact size, these detectors can potentially achieve high geometrical collection efficiencies; however, using traditional approximations detector solid angle calculations rapidly break down and at times can yield nonphysical values. In this article we present generalized formulas that can be used to calculate the variation in detection solid angle for contemporary Si(Li) as well as new silicon drift configurations.

Type
Microanalysis
Copyright
Copyright © Microscopy Society of America 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barken, S., Saveliev, V.D., Iwanczyk, J.S., Feng, L., Tull, C.R., Patt, B.E., Newbury, D.E., Small, J.A. & Zaluzec, N.J. (2004). A new improved silicon multi-cathode detector (SMCD) for microanalysis and X-ray mapping applications, Microsc Today 12, 3638.CrossRefGoogle Scholar
Bertuccio, G., Castoldi, A., Longoni, A., Sampietro, M. & Gauthier, C. (1992). New electrode geometry and potential distribution for soft-X-ray drift detectors. Nucl Instrum Meth Phys Res A 312, 613616.CrossRefGoogle Scholar
Fitzgerald, R., Keil, K. & Heinrich, K.F.J. (1968). Solid-state energy-dispersion spectrometer for electron-microprobe X-ray analysis. Science 159, 528.CrossRefGoogle ScholarPubMed
Gatti, E. & Rehak, P. (1984). Semiconductor drift chamber—An application of a novel charge transport scheme. Nucl Instrum Meth Phys Res 225, 608614.CrossRefGoogle Scholar
Goldstein, J.I., Newbury, D.E., Echilin, P., Joy, D.C., Romig, A.D., Lyman, C.E., Fiori, C. & Lifshin, E. (1992). Scanning Electron Microscopy and X-ray Microanalysis. New York: Plenum.CrossRefGoogle Scholar
Iwanczyk, J.S.., Patt, B.E. & Segal, J. (1996). Simulation and modelling of a new silicon X-ray drift detector design for synchrotron radiation applications. Nucl Instrum Meth Phys Res A 380, 288294.CrossRefGoogle Scholar
Kotula, P.G., Michael, J.R. & Rohde, M. (2008). Results from two four-channel Si-drift detectors on an SEM: Conventional and annular geometries. Microsc Microanal 14(Suppl. 2), 116117.CrossRefGoogle Scholar
Zaluzec, N.J. (1979). Quantitative X-ray microanalysis. In Introduction to Analytical Electron Microscopy, Hren, J.J., Joy, D.C. & Goldstein, J.I. (Eds.), pp. 121167. New York: Plenum Press.CrossRefGoogle Scholar
Zaluzec, N.J. (2004). XEDS systems for the next generation analytical electron microscope. Microsc Microanal 10(Suppl. 2), 122123.CrossRefGoogle Scholar