Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-28T15:53:38.088Z Has data issue: false hasContentIssue false

Determination of Mean Inner Potential and Inelastic Mean Free Path of ZnTe Using Off-Axis Electron Holography and Dynamical Effects Affecting Phase Determination

Published online by Cambridge University Press:  27 November 2015

Zhaofeng Gan*
Affiliation:
Department of Physics, Arizona State University, Tempe, AZ 85287, USA
Michael DiNezza
Affiliation:
School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
Yong-Hang Zhang
Affiliation:
School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ 85287, USA
David J. Smith
Affiliation:
Department of Physics, Arizona State University, Tempe, AZ 85287, USA
Martha R. McCartney
Affiliation:
Department of Physics, Arizona State University, Tempe, AZ 85287, USA
*
*Corresponding author. zgan2@asu.edu
Get access

Abstract

The mean inner potential (MIP) and inelastic mean free path (IMFP) of undoped ZnTe are determined using a combination of off-axis electron holography and convergent beam electron diffraction. The ZnTe MIP is measured to be 13.7±0.6 V, agreeing with previously reported simulations, and the IMFP at 200 keV is determined to be 46±2 nm for a collection angle of 0.75 mrad. Dynamical effects affecting holographic phase imaging as a function of incident beam direction for several common semiconductors are systematically studied and compared using Bloch wave simulations. These simulation results emphasize the need for careful choice of specimen orientation when carrying out quantitative electron holography studies in order to avoid erroneous phase measurements.

Type
Materials Applications and Techniques
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Callister, W.D., Larsen, T.L., Varotto, C.F. & Stevenson, D.A. (1972). The high temperature electrical properties of ZnTe: Al; self-compensation model in ZnTe. J Phys Chem Solids 33, 14331442.CrossRefGoogle Scholar
Den Hertog, M.I., Schmid, H., Cooper, D., Rouviere, J.L., Bjork, M.T., Riel, H., Rivallin, P., Karg, S. & Riess, W. (2009). Mapping active dopants in single silicon nanowires using off-axis electron holography. Nano Lett 9, 38373843.CrossRefGoogle ScholarPubMed
DiNezza, M.J., Zhang, Q., Ding, D., Fan, J., Liu, X., Furdyna, J.K. & Zhang, Y.-H. (2012). Aluminum diffusion in ZnTe films grown on GaSb substrates for n-type doping. Phys Status Solidi C 9, 17201723.Google Scholar
Gajdardziska-Josifovska, M. & Carim, A.H. (1999). Introduction to Electron Holography. New York, NY: Kluwer Academic/Plenum Publishers.Google Scholar
Gajdardziska-Josifovska, M., McCartney, M.R., de Ruijter, W.J., Smith, D.J., Weiss, J.K. & Zuo, J.M. (1993). Accurate measurements of mean inner potential of crystal wedges using digital electron holograms. Ultramicroscopy 50, 285299.CrossRefGoogle Scholar
Hiroshi, O., Gheyas Syed, I., Hitoshi, N., Mitsuhiro, N. & Akira, Y. (1994). Growth of low-resistivity n-type ZnTe by metalorganic vapor phase epitaxy. Jpn J Appl Phys 33, L980.Google Scholar
Lichte, H., Börrnert, F., Lenk, A., Lubk, A., Röder, F., Sickmann, J., Sturm, S., Vogel, K. & Wolf, D. (2013). Electron holography for fields in solids: Problems and progress. Ultramicroscopy 134, 126134.CrossRefGoogle Scholar
Lubk, A., Wolf, D. & Lichte, H. (2010). The effect of dynamical scattering in off-axis holographic mean inner potential and inelastic mean free path measurements. Ultramicroscopy 110, 438446.Google Scholar
Mandel, G. (1964). Self-compensation limited conductivity in binary semiconductors. I. Theory. Phys Rev 134, A1073A1079.Google Scholar
McCartney, M.R., Agarwal, N., Chung, S., Cullen, D.A., Han, M.-G., He, K., Li, L., Wang, H., Zhou, L. & Smith, D.J. (2010). Quantitative phase imaging of nanoscale electrostatic and magnetic fields using off-axis electron holography. Ultramicroscopy 110, 375382.Google Scholar
McCartney, M.R. & Gajdardziska-Josifovska, M. (1994). Absolute measurement of normalized thickness, t/λi, from off-axis electron holography. Ultramicroscopy 53, 283289.Google Scholar
McCartney, M.R. & Smith, D.J. (2007). Electron holography: Phase imaging with nanometer resolution. Annu Rev Mater Res 37, 729767.CrossRefGoogle Scholar
Ross, F.M. & Stobbs, W.M. (1991). Computer modelling for Fresnel contrast analysis. Philos Mag A 63, 3770.CrossRefGoogle Scholar
Sato, K., Hanafusa, M., Noda, A., Arakawa, A., Uchida, M., Asahi, T. & Oda, O. (2000). ZnTe pure green light-emitting diodes fabricated by thermal diffusion. J Crystal Growth 214–215, 10801084.Google Scholar
Schowalter, M., Lamoen, D., Rosenauer, A., Kruse, P. & Gerthsen, D. (2004). First-principles calculations of the mean inner Coulomb potential for sphalerite type II–VI semiconductors. Appl Phys Lett 85, 4938.CrossRefGoogle Scholar
Spence, J.C.H. & Zuo, J.M. (1992). Electron Microdiffraction. New York, NY: Plenum Press.Google Scholar
Stadelmann, P.A. (1987). EMS—a software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21, 131145.Google Scholar
Tanaka, T., Guo, Q., Nishio, M. & Ogawa, H. (2007). Characterization of Al-doped ZnTe layer using scanning capacitance microscopy and Kelvin probe force microscopy. J Phys Conf Ser 61, 11621166.CrossRefGoogle Scholar
Tanaka, T., Hayashida, K., Saito, K., Nishio, M., Guo, Q. & Ogawa, H. (2006). Effect of surface treatment on properties of ZnTe LED fabricated by Al thermal diffusion. Phys Status Solidi B 243, 959962.Google Scholar
Tao, I.W., Jurkovic, M. & Wang, W.I. (1994). Doping of ZnTe by molecular beam epitaxy. Appl Phys Lett 64, 18481849.Google Scholar
Teiji, T., Toyosaka, M. & Kiyoshi, T. (1972). ZnTe-InAs heterojunctions prepared by liquid-phase epitaxy. Jpn J Appl Phys 11, 1024.Google Scholar
Yazdi, S., Kasama, T., Beleggia, M., Samaie-Yekta, M., Mccomb, D.W., Twitchett-Harrison, A.C. & Dunin-Borkowski, R.E. (2015). Towards quantitative electrostatic potential mapping of working semiconductor devices using off-axis electron holography. Ultramicroscopy 152, 1020.CrossRefGoogle ScholarPubMed