Article contents
Direct Observation of the Surface Topography at High Temperature with SEM
Published online by Cambridge University Press: 03 April 2020
Abstract
High-temperature scanning electron microscopy allows the direct study of the temperature behavior of materials. Using a newly developed heating stage, tilted images series were recorded at high temperature and 3D images of the sample surface were reconstructed. By combining 3D images recorded at different temperatures, the variations of material roughness can be accurately described and associated with local changes in the topography of the sample surface.
- Type
- Software and Instrumentation
- Information
- Copyright
- Copyright © Microscopy Society of America 2020
References
Barreau, M, Méthivier, C, Allely, C, Cremel, S, Drillet, P, Grigorieva, R, Nabi, B, Podor, R, Lautru, J, Humblot, V, Landoulsi, J, Sturel, T & Carrier, X (2020). In situ surface imaging: High temperature environmental SEM study of the surface changes in morphology and structure during heat treatment of an Al–Si coated boron steel. Mater Charact 163, 110266.CrossRefGoogle Scholar
Broekmaat, J, Brinkman, A, Blank, DHA & Rijnders, G (2008). High temperature surface imaging using atomic force microscopy. Appl Phys Lett 92, 043102.CrossRefGoogle Scholar
Chandra, A, Nakatani, R, Uchiyama, T, Seino, Y, Sato, H, Kasahara, Y, Azuma, T & Hayakawa, T (2019). Direct in situ observation of the early-stage disorder–order evolution of perpendicular lamellae in thermally annealed high-χ block copolymer thin films. Adv Mater Interfaces 6(11), 1801401.CrossRefGoogle Scholar
Digitalsurf Mountains. Available at https://www.digitalsurf.com/software-solutions/scanning-electron-microscopy/Google Scholar
Fan, DW & De Cooman, BC (2012). State-of-the-knowledge on coating systems for hot stamped parts. Steel Res Int 83, 412–433.CrossRefGoogle Scholar
Grigorieva, R, Drillet, P, Mataigne, JM & Redjaïmia, A (2011). Phase transformations in the Al–Si coating during the austenitization step. Solid State Phenom 172–174, 784–790.CrossRefGoogle Scholar
Hobbs, JK, Farrance, OE & Kailas, L (2009). How atomic force microscopy has contributed to our understanding of polymer crystallization? Polymer 50, 4281–4292.CrossRefGoogle Scholar
Jenner, F, Walter, ME, Mohan Iyengar, R & Hughes, R (2010). Evolution of phases, microstructure, and surface roughness during heat treatment of aluminized low carbon steel. Metall Mater Trans A 41, 1554–1563.CrossRefGoogle Scholar
Joachimi, W, Hemmleb, M, Grauel, U, Wang, ZJ, Willinger, MG & Moldovan, G (2018). High temperature BSE and EBAC electronics for ESEM. Microsc Microanal 24(1), 694–695.CrossRefGoogle Scholar
Karbasian, H & Tekkaya, AE (2010). A review on hot stamping. J Mater Process Technol 210, 2103–2118.CrossRefGoogle Scholar
Li, D (2015). In situ high temperature surface morphology using 3D profilometry. Available at https://nanovea.com/in-situ-morphology-at-high-temperature-using-3d-profilometry/Google Scholar
Liang, W, Tao, W, Zhu, B & Zhang, Y (2017). Influence of heating parameters on properties of the Al–Si coating applied to hot stamping. Sci China Technol Sci 60, 1088–1102.CrossRefGoogle Scholar
Mansour, H (2016). Caractérisation des défauts cristallins au MEB par canalisation d’électrons assistée par diagrammes pseudo-Kikuchi haute résolution: Application à l'acier IF, UO2 et TiAl. PhD Thesis. Université de Lorraine.Google Scholar
Nkou Bouala, GI, Clavier, N, Lechelle, J, Mesbah, A, Dacheux, N & Podor, R (2015). In situ HT-ESEM study of crystallites growth within CeO2 microspheres. Ceram Int 41, 14703–14711.CrossRefGoogle Scholar
Podor, R, Le Goff, X, Cordara, T, Odorico, M, Favrichon, J, Claparede, L, Szenknect, S & Dacheux, N (2019 a). 3D-SEM height maps series to monitor materials corrosion and dissolution. Mater Charact 150, 220–228.CrossRefGoogle Scholar
Podor, R, Nkou Bouala, GI, Ravaux, J, Lautru, J & Clavier, N (2019 b). Working with the ESEM at high temperature. Mater Charact 151, 15–26.CrossRefGoogle Scholar
Ponz, E, Ladaga, JL & Bonetto, RD (2006). Measuring surface topography with scanning electron microscopy. I. EZEImage: A program to obtain 3D surface data. Microsc Microanal 12(2), 170–177.CrossRefGoogle ScholarPubMed
Rivlin, VG & Raynor, GV (1981). Critical evaluation of constitution of aluminium-iron-silicon system. Int Met Rev 26, 133–152.Google Scholar
Roobol, SB, Cañas-Ventura, ME, Bergman, M, van Spronsen, MA, Onderwaater, WG, van der Tuijn, PC, Koehler, R, Ofitserov, A, van Baarle, GJC & Frenken, JWM (2015). The ReactorAFM: Non-contact atomic force microscope operating under high-pressure and high-temperature catalytic conditions. Rev Sci Instrum 86, 033706.CrossRefGoogle ScholarPubMed
Shi, Q, Roux, S, Latourte, F, Hild, F, Loisnard, D & Brynaert, N (2018). Measuring topographies from conventional SEM acquisitions. Ultramicroscopy 191, 18–33.CrossRefGoogle ScholarPubMed
Slówko, W, Wiatrowski, A & Krysztof, M (2018). Detection of secondary and backscattered electrons for 3D imaging with multi-detector method in VP/ESEM. Micron 104, 45–60.CrossRefGoogle ScholarPubMed
Tafti, AP, Holz, JD, Baghaie, A, Owen, HA, He, MM & Yu, Z (2016). 3DSEM++: Adaptive and intelligent 3D SEM surface reconstruction. Micron 87, 33–45.CrossRefGoogle ScholarPubMed
Tafti, AP, Kirkpatrick, AB, Alavi, Z, Owen, HA & Yu, Z (2015). Recent advances in 3D SEM surface reconstruction. Micron 78, 54–66.CrossRefGoogle ScholarPubMed
Weili, D, Yanxin, Z, Haojian, L, Wenfeng, W & Yajing, S (2019). Automatic 3D reconstruction of SEM images based on nano-robotic manipulation and epipolar plane images. Ultramicroscopy 200, 149–159.Google Scholar
- 12
- Cited by