No CrossRef data available.
Published online by Cambridge University Press: 08 August 2003
A dual excitation microfluorimeter is described for measuring rapidly changing, intracellular calcium signals. A spinning sector wheel is used in conjunction with a beam masking device to provide rapid, efficient switching between the 2 excitation wavelengths. Exposure intervals as short as 120 μs can be achieved, yielding ratio samples at a rate of 6 kHz. Emission photons are collected using a photomultiplier tube operating in counting mode. When tested using FURA-2 as the calcium reporting dye, throughput noise in the system is demonstrated to be due to the statistical fluctuation inherent in photon counting. An example of the operation of the system, using a guinea pig cardiac myocyte, demonstrates that sufficient ratio data may be acquires to fully characterize the fastest components of the intracellular calcium signal.