Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T08:21:16.277Z Has data issue: false hasContentIssue false

EELS Investigations of Different Niobium Oxide Phases

Published online by Cambridge University Press:  19 September 2006

D. Bach
Affiliation:
Laboratorium für Elektronenmikroskopie, Universität Karlsruhe (TH), D-76128 Karlsruhe, Germany
H. Störmer
Affiliation:
Laboratorium für Elektronenmikroskopie, Universität Karlsruhe (TH), D-76128 Karlsruhe, Germany
R. Schneider
Affiliation:
Laboratorium für Elektronenmikroskopie, Universität Karlsruhe (TH), D-76128 Karlsruhe, Germany
D. Gerthsen
Affiliation:
Laboratorium für Elektronenmikroskopie, Universität Karlsruhe (TH), D-76128 Karlsruhe, Germany
J. Verbeeck
Affiliation:
Electron Microscopy for Materials Research (EMAT), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
Get access

Abstract

Electron energy loss spectra in conjunction with near-edge fine structures of purely stoichiometric niobium monoxide (NbO) and niobium pentoxide (Nb2O5) reference materials were recorded. The structures of the niobium oxide reference materials were checked by selected area electron diffraction to ensure a proper assignment of the fine structures. NbO and Nb2O5 show clearly different energy loss near-edge fine structures of the Nb-M4,5 and -M2,3 edges and of the O-K edge, reflecting the specific local environments of the ionized atoms. To distinguish the two oxides in a quantitative manner, the intensities under the Nb-M4,5 as well as Nb-M2,3 edges and the O-K edge were measured and their ratios calculated. k-factors were also derived from these measurements.

Type
MICROANALYSIS
Copyright
© 2006 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Brydson, R. (2000). A brief review of quantitative aspects of electron energy loss spectroscopy and imaging. Mater Sci Technol 16, 11871198.Google Scholar
de Groot, F.M.F., Grioni, M., Fuggle, J.C., Ghijsen, J., Sawatzky, G.A., & Petersen, H. (1989). Oxygen 1s x-ray-absorption edges of transition-metal oxides. Phys Rev B 40, 57155723.Google Scholar
Egerton, R.F. (1986). Electron Energy-Loss Spectroscopy in the Electron Microscope. New York: Plenum Press.
Fischer, V., Störmer, H., Gerthsen, D., Stenzel, M., Zillgen, H., & Ivers-Tiffée, E. (2003). Niobium as new material for electrolyte capacitors with nanoscale dielectric oxide layers. In Proceedings of the 7th International Conference on Properties and Applications of Dielectric Materials (ICPADM 2003), Nagoya, Japan, pp. 11341137.
Gatehouse, B.M. & Wadsley, A.D. (1964). The crystal structure of the high-temperature form of niobium pentoxide. Acta Crystallog 17, 15451554.Google Scholar
Gmelins Handbuch der Anorganischen Chemie, Niob, Teil B1. (1970). Weinheim: Verlag Chemie GmbH.
Halbritter, J. (1987). On the oxidation and on the superconductivity of niobium. Appl Phys A 43, 128.Google Scholar
Hébert, C., Willinger, M., Su, D.S., Pongratz, P., Schattschneider, P., & Schlögl, R. (2002). Oxygen K-edge in vanadium oxides: Simulations and experiments. Eur Phys J B 28, 407414.Google Scholar
Hofer, F. (1991). Determination of inner-shell cross-sections for EELS-quantification. Microsc Microanal Microstruct 2, 215230.Google Scholar
Hofer, F., Golob, P., & Brunegger, A. (1988). EELS quantification of the elements Sr to W by means of M45 edges. Ultramicroscopy 25, 8184.Google Scholar
Hofer, F. & Kothleitner, G. (1993). Quantitative microanalysis using electron energy-loss spectrometry: I. Li and Be in oxides. Microsc Microanal Microstruct 4, 539560.Google Scholar
Hofer, F. & Kothleitner, G. (1996). Quantitative microanalysis using electron energy-loss spectrometry: II. Compounds with heavier elements. Microsc Microanal Microstruct 7, 265277.Google Scholar
Hofer, F., Kothleitner, G., & Rez, P. (1996). Ionization cross-sections for the L23-edges of the elements Sr to Mo for quantitative EELS analysis. Ultramicroscopy 63, 239245.Google Scholar
Jiang, N. & Spence, J.C.H. (2004). Electron energy-loss spectroscopy of the O K edge of NbO2, MoO2, and WO2. Phys Rev B 70, 245117/1245117/7.Google Scholar
Keast, V.J., Scott, A.J., Brydson, R., Williams, D.B., & Bruley, J. (2001). Electron energy-loss near-edge structure—A tool for the investigation of electronic structure on the nanometre scale. J Microsc 203, 135175.Google Scholar
Kurata, H., Lefèvre, E., Colliex, C., & Brydson, R. (1993). Electron-energy-loss near-edge structures in the oxygen K-edge spectra of transition-metal oxides. Phys Rev B 47, 1376313768.Google Scholar
Lin, X.W., Wang, Y.Y., Dravid, V.P., Michalakos, P.M., & Kung, M.C. (1993). Valence states and hybridization in vanadium oxide systems investigated by transmission electron-energy-loss spectroscopy. Phys Rev B 47, 34773481.Google Scholar
Mitterbauer, C., Kothleitner, G., Grogger, W., Zandbergen, H., Freitag, B., Tiemeijer, P., & Hofer, F. (2003). Electron energy-loss near-edge structures of 3d transition metal oxides recorded at high-energy resolution. Ultramicroscopy 96, 469480.Google Scholar
Orgel, L.E. (1960). An Introduction to Transition-Metal Chemistry: Ligand-Field Theory. London: Methuen & Co Ltd.
Paterson, J.H. & Krivanek, O.L. (1990). ELNES of 3d transition-metal oxides II. Variations with oxidation state and crystal structure. Ultramicroscopy 32, 319325.Google Scholar
Pialoux, A., Joyeux, M.L., & Cizeron, G. (1982). Étude du comportement du niobium sous vide par diffraction des rayons X à haute température. J Less-Common Met, 87, 119.Google Scholar
Rosenfeld, D., Sajines, R., Levy, F., Buffat, B.A., Demarne, V., & Grisel, A. (1994). Structural and morphological characterization of Nb2O5 thin film deposited by reactive sputtering. J Vac Sci Technol A 12, 135139.Google Scholar
Saito, Y. & Shiosaki, T. (1992). Second harmonic generation in Nb2O5 thin-film optical waveguide deposited on LiTaO3 substrate by RF magnetron sputtering. Jpn J Appl Phys 31, 31643169.Google Scholar
Stadelmann, P.A. (1987). EMS—A software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21, 131145.Google Scholar
Wang, D., Su, D.S., & Schlögl, R. (2004). Electron beam induced transformation of MoO3 to MoO2 and a new phase MoO. Z Anorg Allg Chem 630, 10071014.Google Scholar
Zillgen, H., Stenzel, M., & Lohwasser, W. (2002). New niobium capacitors with stable electrical parameters. Active Passive Electron Compon 25, 147153.Google Scholar