Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T03:55:48.507Z Has data issue: false hasContentIssue false

Effects of Inhibitors of Δ24(25)-Sterol Methyl Transferase on the Ultrastructure of Epimastigotes of Trypanosoma cruzi

Published online by Cambridge University Press:  15 November 2005

Marina V. Braga
Affiliation:
Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS-Bloco G, Ilha do Fundão, 21949-900, Rio de Janeiro-RJ, Brazil Departamento de Biologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil 4365, Manguinhos, 21045-900, Rio de Janeiro-RJ, Brasil
Filippo Magaraci
Affiliation:
Welsh School of Pharmacy, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3XF, United Kingdom
Silvia Orenes Lorente
Affiliation:
Welsh School of Pharmacy, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3XF, United Kingdom
Ian Gilbert
Affiliation:
Welsh School of Pharmacy, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3XF, United Kingdom
Wanderley de Souza
Affiliation:
Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS-Bloco G, Ilha do Fundão, 21949-900, Rio de Janeiro-RJ, Brazil
Get access

Abstract

Trypanosoma cruzi is the ethiological agent of Chagas disease. New compounds are being developed based on the biosynthesis and function of sterols, because T. cruzi has a requirement for specific endogenous sterols for growth and survival. Sterol biosynthesis inhibitors (SBIs) are drugs commonly used against fungal diseases. These drugs act by depleting essential and specific membrane components and/or inducing the accumulation of toxic intermediary or lateral products of the biosynthetic pathway. In this work we present the effects of WSP488, WSP501, and WSP561, specific inhibitors of Δ24(25)-sterol methyl transferase, on the ultrastructure of T. cruzi epimastigotes. All three drugs inhibited parasite multiplication at low concentrations, with IC50 values of 0.48, 0.44, and 0.48 μM, respectively, and induced marked morphological changes including (a) blockage of cell division; (b) swelling of the mitochondrion, with several projections and depressions; (c) swelling of the perinuclear space; (d) presence of autophagosomes and myelin-like figures; (e) enlargement of the flagellar pocket and of a cytoplasmic vacuole located in close association with the flagellar pocket; (f) detachment of the membrane of the cell body; and (g) formation of a vesicle at the surface of the parasite between the flagellar pocket and the cytostome. Our results show that these drugs are potent in vitro inhibitors of growth of T. cruzi.

Type
Biological Applications
Copyright
© 2005 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Attias, M. & De Souza, W. (1985). Fine structure and cytochemistry of Phytomonas davidi. J Submicrosc Cytol 17, 205212.Google Scholar
Braga, M.V., Urbina, J.A., & De Souza, W. (2004). Effects of squalene synthase inhibitors on the growth and ultrastructure of Trypanosoma cruzi. Int J Antimicrob Ag 24, 7278.Google Scholar
Brener, Z., Cançado, J.R., Galvão, L.M., Da Luz, Z.M.P., Filardi, L.S., Pereira, M.E.S., Santos, L.M.T., & Cançado, C.B. (1993). An experimental and clinical assay with ketoconazole in the treatment of Chagas disease. Mem Inst Oswaldo Cruz 88, 149153.Google Scholar
Carvalho, T.U. & De Souza, W. (1987). Effect of phorbol-12–myristate-13-acetate (PMA) on the fine structure of Trypanosoma cruzi and its interaction with activated and resident macrophages. Parasitol Res 74, 1117.Google Scholar
Contreras, L.M., Vivas, J., & Urbina, J.A. (1997). Altered lipid composition and enzyme activities of plasma membranes from Trypanosoma (Schizotrypanum) cruzi epimastigotes grown in the presence of sterol biosynthesis inhibitors. Biochem Pharmacol 53, 697704.Google Scholar
De Souza, W. (2002). Basic cell biology of Trypanosoma cruzi. Curr Pharm Des 8, 269285.Google Scholar
De Souza, W., Carvalho, T.U., & Benchimol, M. (1978a). Trypanosoma cruzi: Ultrastructural, cytochemical and freeze-fracture studies of protein uptake. Exp Parasitol 45, 101115.Google Scholar
De Souza, W., Martinez-Palomo, A., & Gonzales-Robles, A. (1978b). The cell surface of Trypanosoma cruzi. Cytochemistry and freeze-fracture. J Cell Sci 33, 285299.Google Scholar
Docampo, R., Moreno, S.N.J., Turrens, J.F., Katzin, A.M., Gonzales-Cappa, S.M., & Stoppani, A.O.M. (1981). Biochemical and ultrastructural alterations produced by miconazole and econazole in Trypanosoma cruzi. Mol Biochem Parasitol 3, 169180.Google Scholar
Figueiredo, R.C. & Soares, M.J. (2000). Low temperature blocks fluid-phase pinocytosis and receptor-mediated endocytosis in Trypanosoma cruzi epimastigotes. Parasitol Res 86, 413418.Google Scholar
Goad, L.J., Berens, R.L., Marr, J.J., Beach, D.H., & Holz, G.G., Jr. (1989). The activity of ketoconazole and other azoles against Trypanosoma cruzi: Biochemistry and chemotherapeutic action in vitro. Mol Biochem Parasitol 32, 179190.Google Scholar
Kirchhoff, L.V. (1993). American Trypanosomiasis (Chagas' disease)—A tropical disease now in the United States. New Engl J Med 329, 639644.Google Scholar
Larralde, G., Vivas, J., & Urbina, J.A. (1988). Concentration and time dependence of the effects of ketoconazole on growth and sterol biosynthesis in Trypanosoma (Schizotrypanum) cruzi epimastigotes. Acta Cient Venez 39, 140146.Google Scholar
Lazardi, K., Urbina, J.A., & De Souza, W. (1990). Ultrastructural alterations induced by two ergosterol biosynthesis inhibitors, ketoconazole and terbinafine, on epimastigotes and amastigotes of Trypanosoma (Schizotrypanum) cruzi. Antimicrob Agents Chemother 34, 20972105.Google Scholar
Lazardi, K., Urbina, J.A., & De Souza, W. (1991). Ultrastructutal alterations induced by ICI 195,739, a bis-triazole with strong antiproliferative action against Trypanosoma (Schizotrypanum) cruzi. Antimicrob Agents Chemother 35, 736740.Google Scholar
Liendo, A., Lazardi, K., & Urbina, J.A. (1998). Antiproliferative effects of D0870 on Trypanosoma (Schizotrypanum) cruzi. Antimicrob Agents Chemother 41, 197205.Google Scholar
Linder, J.C. & Staehelin, L.A. (1979). A novel model for fluid secretion by the trypanosomatid contractile vacuole apparatus. J Cell Biol 83, 371382.Google Scholar
Magaraci, F., Jimenez, C.J., Rodrigues, C., Rodrigues, J.C.F., Braga, M.V., De Souza, W., Urbina, J., Yardley, V., De Luca-Fradley, K., Croft, S.L., Ruiz-Perez, L.M., Gonzalez-Pacanowska, D., & Gilbert, I. (2003). Azasterols as inhibitors of sterol 24-methyltransferase in Leishmania and Trypanosoma cruzi. J Med Chem 46, 47144727.Google Scholar
Martin, M.B., Grimley, J.S., Lewis, J.C., Heath, H.T. III>, Bailey, B.N., Kendrick, H., Yardley, V., Caldera, A., Lira, R., Urbina, J.A., Moreno, S.N.J., Docampo, R., Croft, S.L., & Oldfield, E. (2001). Bisphosphonates inhibit the growth of Trypanosoma brucei, Trypanosoma cruzi, Leishmania donovani, Toxoplasma gondii, and Plasmodium falciparum: A potential route to chemotherapy. J Med Chem 44, 909916.Google Scholar
Martinez-Palomo, A., De Souza, W., & Gonzales-Robbles, A. (1976). Topographical differences in the distribution of surface coat components and intramembrane particles. A cytochemical and freeze-fracture study in culture forms of Trypanosoma cruzi. J Cell Biol 69, 507513.Google Scholar
McCabe, R.E. (1988). Failure of ketoconazole to cure chronic murine Chagas disease. J Infect Dis 158, 14081409.Google Scholar
McCabe, R.E., Remington, J.S., & Araújo, E.G. (1984). Ketoconazole inhibition of intracellular multiplication of Trypanosoma cruzi and protection against a lethal infection with the organism. J Infect Dis 150, 594601.Google Scholar
McCabe, R.E., Remington, J.S., & Araújo, E.G. (1986). In vitro and in vivo effects of itraconazole against Trypanosoma cruzi. Am J Trop Med Hyg 35, 280284.Google Scholar
Moreira, A.A., De Souza, H.B.W.T., Amato Neto, V., Matsubara, L., Pinto, P.L.S., Tolezano, J.E., Nunes, E.V., & Okumura, M. (1992). Evaluation of the therapeutic activity of itraconazole in chronic infections, experimental and human, by Trypanosoma cruzi. Rev Inst Med Trop S Paulo 34, 177180.Google Scholar
Nasirudeen, A.M.A., Hian, Y.E., Singh, M., & Tan, K.S.W. (2004). Metronidazole induces programmed cell death in the protozoan parasite Blastocystis hominis. Microbiology 150, 3343.Google Scholar
Paris, C., Loiseau, P.M., Bories, C., & Bréard, J. (2004). Miltefosine induces apoptosis-like death in Leishmania donovani promastigotes. Antimicrob Agents Chemother 48, 852859.Google Scholar
Petranyi, G., Ryder, N.S., & Stutz, A. (1984). Allylamine derivatives: New class of synthetic antifungal agents inhibiting fungal squalene epoxidase. Science 224, 12391241.Google Scholar
Pimenta, P.F., De Souza, W., Souto-Padrón, T., & Pinto Da Silva, P. (1989). The cell surface of Trypanosoma cruzi: A fracture-flip, replica-staining label-fracture survey. Eur J Cell Biol 50, 263271.Google Scholar
Rodrigues, C.O., Catisti, R., Uyemura, S.A., Vercesi, A.E., Lira, R., Rodriguez, C., Urbina, J.A., & Docampo, R. (2001). The sterol composition of Trypanosoma cruzi changes after growth in different culture media and results in different sensitivity to digitonin permeabilization. J Eukaryot Microbiol 48, 588594.Google Scholar
Rodrigues, J.C.F., Attias, M., Rodriguez, C., Urbina, J.A., & De Souza, W. (2002). Ultrastructural and biochemical alterations induced by 22,26-azasterol, a Δ24(25)-sterol methyltransferase inhibitor, on promastigote and amastigote forms of Leishmania amazonensis. Antimicrob Agents Chemother 46, 487499.Google Scholar
Ryder, N.S. (1988). Mechanism of action and biochemical selectivity of allylamine antimycotic agents. Ann NY Acad Sci 544, 208220.Google Scholar
Soares, M.J. & De Souza, W. (1991). Endocytosis of gold-labeled proteins and LDL by Trypanosoma cruzi. Parasitol Res 77, 461468.Google Scholar
Turrens, J.F., Boveris, A., Gros, E.G., & Stoppani, A.O.M. (1980). Distribucion subcelular de ergosterol y esteroles 5,7-dienicos en Trypanosoma cruzi. Medicina 40, 137144.Google Scholar
Urbina, J.A. (1997). Lipid biosynthesis pathways as chemotherapeutic targets in kinetoplastid parasites. Parasitol 114(suppl.), S91S99.Google Scholar
Urbina, J.A. (2002). Chemotherapy of Chagas disease. Curr Pharm Des 8, 287295.Google Scholar
Urbina, J.A., Lazardi, K., Aguirre, T., Piras, M.M., & Piras, R. (1988a). Antiproliferative synergism of the allylamine SF-86327 and ketoconazole on epimastigotes and amastigotes of Trypanosoma (Schizotrypanum) cruzi. Antimicrob Agents Chemother 32, 12371242.Google Scholar
Urbina, J.A., Lazardi, K., Aguirre, T., Piras, M.M., & Piras, R. (1991). Antiproliferative effects and mechanism of action of ICI 195,739, a novel bis-triazole derivative, on epimastigotes and amastigotes of Trypanosoma (Schizotrypanum) cruzi. Antimicrob Agents Chemother 35, 730735.Google Scholar
Urbina, J.A., Lazardi, K., Marchan, E., Visbal, G., Aguirre, T., Piras, M.M., Piras, R., Maldonado, R.A., Payares, G., & De Souza, W. (1993). Mevinolin (lovastatin) potentiates the antiproliferative effects of ketoconazole and terbinafine against Trypanosoma (Schizotrypanum) cruzi: In vivo and in vitro studies. Antimicrob Agents Chemother 37, 580591.Google Scholar
Urbina, J.A., Payares, G., Contreras, L.M., Liendo, A., Sanoja, C., Molina, J., Piras, M., Piras, R., Perez, N., Wincker, P., & Loebenberg, D. (1998). Antiproliferative effects and mechanism of action of SCH 56592 against Trypanosoma (Schizotrypanum) cruzi: In vitro and in vivo studies. Antimicrob Agents Chemother 42, 17711777.Google Scholar
Urbina, J.A., Payares, G., Molina, J., Sanoja, C., Liendo, A., Lazardi, K., Piras, R., Perez, N., Wincker, P., & Ryley, J.F. (1996a). Cure of short and long-term experimental Chagas disease using D0870. Science 273, 969971.Google Scholar
Urbina, J.A., Payares, G., Sanoja, C., Contreras, L.M., Liendo, A., Piras, M.M., & Piras, R. (1996b). In vitro and in vivo antiproliferative effects of SCH 56592 against Trypanosoma cruzi, the causative agent of Chagas disease. ICAAC Abstr 36, F102.Google Scholar
Urbina, J.A., Visbal, G., Contreras, L.M., Mclaughlin, G., & Docampo, R. (1997). Inhibitors of by Δ24(25)-sterol methyltransferase block sterol synthesis and cell proliferation in Pneumocystis carinii. Antimicrob Agents Chemother 41, 14281432.Google Scholar
Urbina, J.A., Vivas, J., Ramos, H., Larralde, G., Aguilar, Z., & Avilan, L. (1988b). Alteration of lipid order profile and permeability of plasma membranes from Trypanosoma cruzi epimastigotes grown in the presence of ketoconazole. Mol Biochem Parasitol 30, 185196.Google Scholar
Urbina, J.A., Vivas, J., Visbal, G., & Contreras, L.M. (1995). Modification of the sterol composition of Trypanosoma (Schizotrypanum) cruzi epimastigotes by Δ24(25)-sterol methyl transferase inhibitors and their combinations with ketoconazole. Mol Biochem Parasitol 73, 199210.Google Scholar
Vannier-Santos, M.A., Pimenta, P.F., & De Souza, W. (1988). Effects of phorbol ester on Leishmania mexicana amazonensis: An ultrastructural and cytochemical study. J Submicrosc Cytol Pathol 20, 583593.Google Scholar
Vannier-Santos, M.A., Urbina, J.A., Martiny, A., Neves, A., & De Souza, W. (1995). Alterations induced by the antifungal compounds ketoconazole and terbinafine in Leishmania. J Eukaryot Microbiol 42, 337346.Google Scholar
Verma, N.K. & Dey, C.S. (2004). Possible mechanism of miltefosine-mediated death of Leishmania donovani. Antimicrob Agents Chemother 48, 30103015.Google Scholar
Vivas, J., Urbina, J.A., & De Souza, W. (1996). Ultrastructural alterations in Trypanosoma (Schizotrypanum) cruzi induced by a Δ24(25)-sterol methyltransferase inhibitors and their combinations with ketoconazole. Int J Antimicrob Agents 7, 235240.Google Scholar
World Health Organization. (2002). Strategic direction for Chagas disease research. TDR Report. Geneva: Author.