Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T22:06:59.707Z Has data issue: false hasContentIssue false

Electron Beam-Induced Deposition for Atom Probe Tomography Specimen Capping Layers

Published online by Cambridge University Press:  17 October 2016

David R. Diercks*
Affiliation:
Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO 80401, USA
Brian P. Gorman
Affiliation:
Department of Metallurgical and Materials Engineering, Colorado School of Mines, Golden, CO 80401, USA
Johannes J. L. Mulders
Affiliation:
FEI Electron Optics, 5600 KA Eindhoven, The Netherlands
*
*Corresponding author.ddiercks@mines.edu
Get access

Abstract

Six precursors were evaluated for use as in situ electron beam-induced deposition capping layers in the preparation of atom probe tomography specimens with a focus on near-surface features where some of the deposition is retained at the specimen apex. Specimens were prepared by deposition of each precursor onto silicon posts and shaped into sub-70-nm radii needles using a focused ion beam. The utility of the depositions was assessed using several criteria including composition and uniformity, evaporation behavior and evaporation fields, and depth of Ga+ ion penetration. Atom probe analyses through depositions of methyl cyclopentadienyl platinum trimethyl, palladium hexafluoroacetylacetonate, and dimethyl-gold-acetylacetonate [Me2Au(acac)] were all found to result in tip fracture at voltages exceeding 3 kV. Examination of the deposition using Me2Au(acac) plus flowing O2 was inconclusive due to evaporation of surface silicon from below the deposition under all analysis conditions. Dicobalt octacarbonyl [Co2(CO)8] and diiron nonacarbonyl [Fe2(CO)9] depositions were found to be effective as in situ capping materials for the silicon specimens. Their very different evaporation fields [36 V/nm for Co2(CO)8 and 21 V/nm for Fe2(CO)9] provide options for achieving reasonably close matching of the evaporation field between the capping material and many materials of interest.

Type
New Approaches and Correlative Microscopy
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Botman, A., Mulders, J.J.L., Weemaes, R. & Mentink, S. (2006). Purification of platinum and gold structures after electron-beam-induced deposition. Nanotechnology 17(15), 3779.CrossRefGoogle Scholar
Córdoba, R., Sesé, J., De Teresa, J.M. & Ibarra, M.R. (2010). High-purity cobalt nanostructures grown by focused-electron-beam-induced deposition at low current. Microelectron Eng 87(5–8), 15501553.CrossRefGoogle Scholar
Diercks, D.R. & Gorman, B.P. (2015). Nanoscale measurement of laser-induced temperature rise and field evaporation effects in CdTe and GaN. J Phys Chem C 119(35), 2062320631.CrossRefGoogle Scholar
Fernández-Pacheco, A., De Teresa, J.M., Córdoba, R. & Ibarra, M.R. (2009). Magnetotransport properties of high-quality cobalt nanowires grown by focused-electron-beam-induced deposition. J Phys D Appl Phys 42(5), 055005.CrossRefGoogle Scholar
Frabboni, S., Gazzadi, G.C., Felisari, L. & Spessot, A. (2006). Fabrication by electron beam induced deposition and transmission electron microscopic characterization of sub-10-nm freestanding Pt nanowires. Appl Phys Lett 88(21), 213116.CrossRefGoogle Scholar
Gerstl, S.A., Morrone, A. & Kvitek, R. (2006). Three-dimensional nanoscale characterization of Pt deposition from an organometallic precursor induced by a focused ion beam. Microsc Microanal 12(Suppl S02), 12521253.CrossRefGoogle Scholar
Kellogg, G.L. (1983). Field evaporation of silicon and field desorption of hydrogen from silicon surfaces. Phys Rev B 28(4), 19571964.CrossRefGoogle Scholar
Kempshall, B.W., Giannuzzi, L.A., Prenitzer, B.I., Stevie, F.A. & Da, S.X. (2002). Comparative evaluation of protective coatings and focused ion beam chemical vapor deposition processes. J Vac Sci Technol B 20(1), 286290.CrossRefGoogle Scholar
Kingham, D.R. (1982). The post-ionization of field evaporated ions: A theoretical explanation of multiple charge states. Surf Sci 116(2), 273301.CrossRefGoogle Scholar
Larson, D., Geiser, B., Prosa, T., Ulfig, R. & Kelly, T. (2011). Non-tangential continuity reconstruction in atom probe tomography data. Microsc Microanal 17(Suppl S2), 740741.CrossRefGoogle Scholar
Larson, D.J., Foord, D.T., Petford-Long, A.K., Anthony, T.C., Rozdilsky, I.M., Cerezo, A. & Smith, G.W.D. (1998). Focused ion-beam milling for field-ion specimen preparation: Preliminary investigations. Ultramicroscopy 75(3), 147159.CrossRefGoogle Scholar
Lavrijsen, R., Córdoba, R., Schoenaker, F.J., Ellis, T.H., Barcones, B., Kohlhepp, J.T., Swagten, H.J.M., Koopmans, B., De Teresa, J.M., Magén, C., Ibarra, M.R., Trompenaars, P. & Mulders, J.J.L. (2011). Fe:O:C grown by focused-electron-beam-induced deposition: Magnetic and electric properties. Nanotechnology 22(2), 025302.CrossRefGoogle ScholarPubMed
Lee, J.H., Lee, B.H., Kim, Y.T., Kim, J.J., Lee, S.Y., Lee, K.P. & Park, C.G. (2014). Study of vertical Si/SiO2 interface using laser-assisted atom probe tomography and transmission electron microscopy. Micron 58, 3237.CrossRefGoogle ScholarPubMed
Li, J., Diercks, D.R., Ohno, T.R., Warren, C.W., Lonergan, M.C., Beach, J.D. & Wolden, C.A. (2015). Controlled activation of ZnTe:Cu contacted CdTe solar cells using rapid thermal processing. Sol Energy Mater Sol Cells 133, 208215.CrossRefGoogle Scholar
Lipp, S., Frey, L., Lehrer, C., Frank, B., Demm, E. & Ryssel, H. (1996). Investigations on the topology of structures milled and etched by focused ion beams. J Vac Sci Technol B 14(6), 39963999.CrossRefGoogle Scholar
Loi, S.T., Gault, B., Ringer, S.P., Larson, D.J. & Geiser, B.P. (2013). Electrostatic simulations of a local electrode atom probe: The dependence of tomographic reconstruction parameters on specimen and microscope geometry. Ultramicroscopy 132, 107113.CrossRefGoogle ScholarPubMed
Mancini, L., Amirifar, N., Shinde, D., Blum, I., Gilbert, M., Vella, A., Vurpillot, F., Lefebvre, W., Lardé, R., Talbot, E., Pareige, P., Portier, X., Ziani, A., Davesnne, C., Durand, C., Eymery, J., Butté, R., Carlin, J.-F., Grandjean, N. & Rigutti, L. (2014). Composition of wide bandgap semiconductor materials and nanostructures measured by atom probe tomography and its dependence on the surface electric field. J Phys Chem C 118(41), 2413624151.CrossRefGoogle Scholar
Marquis, E.A., Geiser, B.P., Prosa, T.J. & Larson, D.J. (2011). Evolution of tip shape during field evaporation of complex multilayer structures. J Microsc 241(3), 225233.CrossRefGoogle ScholarPubMed
Melngailis, J. & Blauner, P.G. (1989). Focused ion beam induced deposition. In MRS Proceedings, Vol. 147, p. 127. Cambridge University Press, Cambridge, UK.Google Scholar
Miller, M.K., Russell, K.F. & Thompson, G.B. (2005). Strategies for fabricating atom probe specimens with a dual beam FIB. Ultramicroscopy 102(4), 287298.CrossRefGoogle ScholarPubMed
Moore, J.S., Jones, K.S., Kennel, H. & Corcoran, S. (2008). 3-D analysis of semiconductor dopant distributions in a patterned structure using LEAP. Ultramicroscopy 108(6), 536539.CrossRefGoogle Scholar
Mulders, J.J.L., Belova, L.M. & Riazanova, A. (2011). Electron beam induced deposition at elevated temperatures: Compositional changes and purity improvement. Nanotechnology 22(5), 055302.CrossRefGoogle ScholarPubMed
Mutas, S., Klein, C. & Gerstl, S.S.A. (2011). Investigation of the analysis parameters and background subtraction for high-k materials with atom probe tomography. Ultramicroscopy 111(6), 546551.CrossRefGoogle ScholarPubMed
Pfeiffer, B., Erichsen, T., Epler, E., Volkert, C.A., Trompenaars, P. & Nowak, C. (2015). Characterization of nanoporous materials with atom probe tomography. Microsc Microanal 21(3), 557563.CrossRefGoogle ScholarPubMed
Rotkina, L., Oh, S., Eckstein, J.N. & Rotkin, S.V. (2005). Logarithmic behavior of the conductivity of electron-beam deposited granular Pt∕C nanowires. Phys Rev B 72(23), 233407.CrossRefGoogle Scholar
Rykaczewski, K., Hildreth, O.J., Wong, C.P., Fedorov, A.G. & Scott, J.H.J. (2011). Directed 2D-to-3D pattern transfer method for controlled fabrication of topologically complex 3D features in silicon. Adv Mater 23(5), 659663.CrossRefGoogle ScholarPubMed
Schreiber, D.K., Chiaramonti, A.N., Gordon, L.M. & Kruska, K. (2014). Applicability of post-ionization theory to laser-assisted field evaporation of magnetite. Appl Phys Lett 105(24), 244106.CrossRefGoogle Scholar
Straub, H.C., Mangan, M.A., Lindsay, B.G., Smith, K.A. & Stebbings, R.F. (1999). Absolute detection efficiency of a microchannel plate detector for kilo-electron volt energy ions. Rev Sci Instrum 70(11), 42384240.CrossRefGoogle Scholar
Talbot, E., Lardé, R., Gourbilleau, F., Dufour, C. & Pareige, P. (2009). Si nanoparticles in SiO2 an atomic scale observation for optimization of optical devices. Europhys Lett 87(2), 26004.CrossRefGoogle Scholar
Tao, T., Wilkinson, W. & Melngailis, J. (1991). Focused ion beam induced deposition of platinum for repair processes. J Vac Sci Technol B 9(1), 162164.CrossRefGoogle Scholar
Thompson, K., Bunton, J.H., Kelly, T.F. & Larson, D.J. (2006). Characterization of ultralow-energy implants and towards the analysis of three-dimensional dopant distributions using three-dimensional atom-probe tomography. J Vac Sci Technol B 24(1), 421427.CrossRefGoogle Scholar
Thompson, K., Larson, D.J. & Ulfig, R.M. (2005). Pre-sharpened and flat-top microtip coupons: A quantitative comparison for atom-probe analysis studies. Microsc Microanal 11(Suppl S02), 882883.CrossRefGoogle Scholar
Thompson, K., Lawrence, D., Larson, D.J., Olson, J.D., Kelly, T.F. & Gorman, B. (2007). In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131139.CrossRefGoogle ScholarPubMed
Thuvander, M., Weidow, J., Angseryd, J., Falk, L.K.L., Liu, F., Sonestedt, M., Stiller, K. & Andrén, H.O. (2011). Quantitative atom probe analysis of carbides. Ultramicroscopy 111(6), 604608.CrossRefGoogle ScholarPubMed
Tsong, T.T. (1978). Field ion image formation. Surf Sci 70, 211233.CrossRefGoogle Scholar
Utke, I., Hoffmann, P. & Melngailis, J. (2008). Gas-assisted focused electron beam and ion beam processing and fabrication. J Vac Sci Technol B 26(4), 11971276.CrossRefGoogle Scholar
Utke, I., Michler, J., Gasser, P., Santschi, C., Laub, D., Cantoni, M., Buffat, P.t.A., Jiao, C. & Hoffmann, P. (2005). Cross section investigations of compositions and sub-structures of tips obtained by focused electron beam induced deposition. Adv Eng Mater 7(5), 323331.CrossRefGoogle Scholar