Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T16:27:43.941Z Has data issue: false hasContentIssue false

Electron Correlation Microscopy: A New Technique for Studying Local Atom Dynamics Applied to a Supercooled Liquid

Published online by Cambridge University Press:  03 June 2015

Li He*
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
Pei Zhang
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
Matthew F. Besser
Affiliation:
Ames Laboratory, Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA
Matthew Joseph Kramer
Affiliation:
Ames Laboratory, Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011, USA
Paul M. Voyles*
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
*
*Corresponding author. lhe32@wisc.edu; paul.voyles@wisc.edu
*Corresponding author. lhe32@wisc.edu; paul.voyles@wisc.edu
Get access

Abstract

Electron correlation microscopy (ECM) is a new technique that utilizes time-resolved coherent electron nanodiffraction to study dynamic atomic rearrangements in materials. It is the electron scattering equivalent of photon correlation spectroscopy with the added advantage of nanometer-scale spatial resolution. We have applied ECM to a Pd40Ni40P20 metallic glass, heated inside a scanning transmission electron microscope into a supercooled liquid to measure the structural relaxation time τ between the glass transition temperature Tg and the crystallization temperature, Tx. τ determined from the mean diffraction intensity autocorrelation function g2(t) decreases with temperature following an Arrhenius relationship between Tg and Tg+25 K, and then increases as temperature approaches Tx. The distribution of τ determined from the g2(t) of single speckles is broad and changes significantly with temperature.

Type
Materials Applications and Techniques
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adam, G. & Gibbs, J.H. (1965). On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43, 139146.Google Scholar
Berthier, L. (2011). Dynamic heterogeneity in amorphous materials. Physics 4, 42, doi:10.1103/Physics.4.42.Google Scholar
Dalle-Ferrier, C., Thibierge, C., Alba-Simionesco, C., Berthier, L., Biroli, G., Bouchaud, J.-P., Ladieu, F., L’Hôte, D. & Tarjus, G. (2007). Spatial correlations in the dynamics of glassforming liquids: Experimental determination of their temperature dependence. Phys Rev E 76, 041510.Google Scholar
Demoulin, C., Montrose, C.J. & Ostrowsky, N. (1974). Structural relaxation by digital-correlation spectroscopy. Phys Rev A 9, 17401742.Google Scholar
Ediger, M.D. (2000). Spatially heterogeneous dynamics in supercooled liquids. Annu Rev Phys Chem 51, 99128.Google Scholar
Egami, T. (1997). Universal criterion for metallic glass formation. Mater Sci Eng A226–228, 261267.Google Scholar
Egami, T. & Billinge, S.J.L. (2003). Underneath the Bragg Peaks: Structural Analysis of Complex Materials, Pergamon Materials Series. Oxford, UK: Elsevier, 404 pp.Google Scholar
Egami, T., Poon, S.J., Zhang, Z. & Keppens, V. (2007). Glass transition in metallic glasses: A microscopic model of topological fluctuations in the bonding network. Phys Rev B 76, 024203.CrossRefGoogle Scholar
Falus, P., Lurio, L.B. & Mochrie, S.G.J. (2006). Optimizing the signal-to-noise ratio for x-ray photon correlation spectroscopy. J Synchrotron Radiat 13, 253259.Google Scholar
Fu, E.G., Carter, J., Martin, M., Xie, G., Zhang, X., Wang, Y.Q., Littleton, R., Mcdeavitt, S. & Shao, L. (2010). Ar-ion-milling-induced structural changes of Cu50Zr45Ti5 metallic glass. Nucl Instruments Methods Phys Res B 268, 545549.Google Scholar
Grűbel, G. & Zontone, F. (2004). Correlation spectroscopy with coherent X-rays. J Alloys Compd 362, 311.Google Scholar
Hammersley, A.P., Svensson, S.O., Hanfland, M., Fitch, A.N. & Häusermann, D. (1996). Two dimensional detector software: From real detector to idealised image or two-theta scan. High Press Res 14, 235248.Google Scholar
Hiscock, M., Dawson, M., Lang, C., Hartfield, C. & Statham, P. (2014). In-situ quantification of TEM lamella thickness and Ga implantation in the FIB. Microsc Microanal 20(Suppl 3), 342343.Google Scholar
Jakeman, E. & Pike, E.R. (1969). Spectrum of clipped photon-counting fluctuations of Gaussian light. J Phys A 2, 411412.Google Scholar
Jiang, J.Z., Saksl, K., Nishiyama, N. & Inoue, A. (2002). Crystallization in Pd40Ni40P20 glass. J Appl Phys 92, 36513656.Google Scholar
Kirsch, S., Frenz, V., Schärtl, W., Bartsch, E. & Sillescu, H. (1995). Multispeckle autocorrelation spectroscopy and its application to the investigation of ultraslow dynamical processes. J Chem Phys 104, 17581761.Google Scholar
Lai, C.C., Macedo, P.B. & Montrose, C.J. (1975). Light-scattering measurements of structural relaxation in glass by digital correlation spectroscopy. J Am Ceram Soc 58, 120123.CrossRefGoogle Scholar
Livet, F. & Sutton, M. (2012). X-ray coherent scattering in metal physics. C R Phys 13, 227236.Google Scholar
Lumma, D., Lurio, L.B., Mochrie, S.G.J. & Sutton, M. (2000). Area detector based photon correlation in the regime of short data batches: Data reduction for dynamic x-ray scattering. Rev Sci Instrum 71, 32743289.Google Scholar
Madsen, A., Leheny, R.L., Guo, H., Sprung, M. & Czakkel, O. (2010). Beyond simple exponential correlation functions and equilibrium dynamics in x-ray photon correlation spectroscopy. New J Phys 12, 055001.Google Scholar
Nishi, T., Shibata, H., Ohta, H., Nishiyama, N., Inoue, A. & Waseda, Y. (2004). Systematic measurement of thermal diffusivity of Pd40Cu40-xNixP20 (x=0, 10, 40) alloys in liquid, glassy, crystallized, and supercooled liquid states by the laser flash method. Phys Rev B 70, 174204.Google Scholar
Pusey, P.N. (1978). Intensity fluctuation spectroscopy of charged Brownian particles: The coherent scattering function. J Phys A Math Gen 11, 119135.Google Scholar
Qiao, J.C., Casalini, R., Pelletier, J.M. & Kato, H. (2014). Characteristics of the Structural and Johari-Goldstein Relaxations in Pd-Based Metallic Glass-Forming Liquids. J Phys Chem B 118, 37203730.Google Scholar
Qiao, J.C. & Pellietier, J.M. (2012). Kinetics of structural relaxation in bulk metallic glasses by mechanical spectroscopy: Determination of the stretching parameter βKWW . Intermetallics 28, 4044.Google Scholar
Reimer, L. (1997). Transmission Electron Microscopy, Physics of Image Formation and Microanalysis, 4th ed. Berlin Heidelberg, New York: Springer. 469 pp.Google Scholar
Ruta, B., Chushkin, Y., Monaco, G., Cipelletti, L., Pineda, E., Bruna, P., Giordano, V.M. & Gonzales-Silveira, M. (2012). Atomic-scale relaxation dynamics and aging in a metallic glass probed by x-ray photon correlation spectroscopy. Phys Rew Lett 109, 165701.Google Scholar
Schröter, K., Wilde, G., Willnecker, R., Weiss, M., Samwer, K. & Donth, E. (1998). Shear modulus and compliance in the range of the dynamic glass transition for metallic glasses. Eur Phys J B 5, 15.Google Scholar
Shpyrko, O.G., Isaacs, E.D., Logan, J.M., Feng, Y., Aeppli, G., Jaramillo, R., Kim, H.C., Rosenbaum, T.F., Zschack, P., Sprung, M., Narayanan, S. & Sandy, A.R. (2007). Direct measurement of antiferromagnetic domain fluctuations. Nature 447, 6871.Google Scholar
Sutton, M., Mochrie, S.G.J., Greytak, T., Nagler, S.E., Berman, L.E., Held, G.A. & Stephenson, G.B. (1991). Observation of speckle by diffraction with coherent x-rays. Nature 352, 608610.Google Scholar
Van Huis, M.A., Young, N.P., Pandraud, G., Creemer, J.F., Vanmaekelbergh, D., Kirkland, A.I. & Zandbergen, H.W. (2009). Atomic imaging of phase transitions and morphology transformations in nanocrystals. Adv Mater 21, 49924995.Google Scholar
Voyles, P.M. & Muller, D.A. (2002). Fluctuation microscopy in the STEM. Ultramicroscopy 93, 147159.Google Scholar
Wang, L.-M., Liu, R. & Wang, W.H. (2008). Relaxation time dispersions in glass forming metallic liquids and glasses. J Chem Phys 128, 164503.Google Scholar
Wilde, G. (2002). Slow relaxations in deeply undercooled metallic liquids. J Non Cryst Solids 312–314, 537541.CrossRefGoogle Scholar
Wilde, G., Klose, S.G., Soellner, W., Görler, G.P., Jeropoulos, K., Willnecker, R. & Fecht, H.J. (1997). On the stability limits of the undercooled liquid state of Pd-Ni-P. Mater Sci Eng A226–228, 434438.Google Scholar
Yi, F. (2011). Medium range order in Al-based metallic glasses. Ph.D. Dissertation, University of Wisconsin-Madison, Madison, WI, USA, pp. 38–40.Google Scholar
Yi, F., Tiemeijer, P. & Voyles, P.M. (2010). Flexible formation of coherent probes on an aberration-corrected STEM with three condensers. J Electron Microsc 59, S15S21.Google Scholar