Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T09:27:15.042Z Has data issue: false hasContentIssue false

Electron Microprobe and Raman Spectroscopy Investigation of an Oxygen-Bearing Pt–Fe–Pd–Ni–Cu Compound from Nurali Chromitite (Southern Urals, Russia)

Published online by Cambridge University Press:  29 April 2015

Federica Zaccarini*
Affiliation:
Department of Applied Geosciences and Geophysics, University of Leoben, A 8700 Leoben, Austria
Giorgio Garuti
Affiliation:
Department of Applied Geosciences and Geophysics, University of Leoben, A 8700 Leoben, Austria
Ronald J. Bakker
Affiliation:
Department of Applied Geosciences and Geophysics, University of Leoben, A 8700 Leoben, Austria
Evgeny Pushkarev
Affiliation:
Ural Division of Russian Academy of Sciences, Institute of Geology and Geochemistry, Str. Pochtovy per. 7, 620151 Ekaterinburg, Russia
*
Get access

Abstract

One grain, about 100×80 μm in size, occurring in chromitite associated with the layered sequence of the Nurali mafic-ultramafic complex (Southern Urals, Russia) was investigated by electron-microprobe analyses and Raman spectroscopy. The grain is characterized by a spotty, rugged appearance and chemical zoning from which two compositions were calculated: (Pt0.35Pd0.26Fe0.22Cu0.01Ni0.05)0.98O1.02 and (Fe0.90Pt0.58Ni0.28Pd0.13Cu0.08Rh0.01)1.98O1.02. In the lack of X-ray data, Raman spectroscopy established the presence of a diffuse 500–700 band and a sharp peak at 657 cm−1 of relative wavenumber that strongly resemble the Raman spectra of synthetic PtO and PdO (palladinite). It is concluded that the Nurali grain probably represents a platinum group element (PGE) oxide, and does not consist of a mixture of PGE alloys with Fe oxide or hydroxide as reported for other natural PGE-O compounds.

Type
EMAS Special Issue
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barkov, A.Y., Fleet, M.E., Nixon, G.T. & Levson, V.M. (2005). Platinum-group minerals from five placer deposits in British Columbia, Canada. Can Mineral 43, 16871710.CrossRefGoogle Scholar
Barnes, S.J. & Fiorentini, M.L. (2008). Iridium, ruthenium and rhodium in komatiites: Evidence for alloy saturation. Chem Geol 257, 4458.Google Scholar
Bowles, J.F.W. (1986). The development of platinum-group minerals in laterite. Econ Geol 81, 12781285.Google Scholar
Bowles, J.F.W., Lyon, J.C., Saxton, J.M. & Vaughan, D.J. (2000). The origin of platinum group minerals from the Freetown intrusions, Sierra Leone, inferred from osmium isotope systematics. Econ Geol 95, 539548.Google Scholar
Cabral, A.R., Beaudoin, G., Choquette, M., Lehmann, B. & Polonia, J.C. (2007). Supergene leaching and formation of platinum in alluvium: Evidence from Serro, Minas Gerais, Brazil. Miner Petrol 90, 141150.Google Scholar
Cabral, A.R., Galbiatti, H.F., Kwitko-ribeiro, R. & Lehmann, B. (2008). Platinum enrichment at low temperatures and related microstructures, with examples of hongshiite (PtCu) and empirical ‘Pt2HgSe3’ from Itabira, Minas Gerais, Brazil. Terra Nova 20, 3237.Google Scholar
Cabral, A.R. & Lehmann, B. (2003). A two-stage process of native palladium formation at low temperature: Evidence from a palladium gold nugget (Gongo Soco iron mine. Minas Gerais, Brazil). Mineral Mag 67, 453463.CrossRefGoogle Scholar
Cabral, A.R., Lehmann, B., Grambole, D. & Herrmann, F. (2004). Hydrogen in a natural Pd-O compound from Gongo Soco, Minas Gerais, Brazil. Can Mineral 42, 689694.CrossRefGoogle Scholar
Cabral, A.R., Lehmann, B. & Jedwab, J. (2012). Empirical Pt7Cu from an alluvial platinum concentrate and its significance for platiniferous quartz lodes in the Lubero region, DR Congo. Neues Jahr Miner Abh 189, 217221.Google Scholar
Cabral, A.R., Lehmann, B., Tupinamba, M., Schlosser, S., Kwito-Riberiro, R. & Abreu, F.R.D. (2009). The platiniferous Au-Pd belt of Minas Gerais, Brazil, and genesis of its botryoidal Pt-Pd aggregates. Econ Geol 104, 12651276.Google Scholar
Fuchs, A.W. & Rose, A.W. (1974). The geochemical behavior of platinum and palladium in the weathering cycle in the Stillwater complex, Montana. Econ Geol 69, 332346.Google Scholar
Galbiatti, H.F., Cabral, A.R., Lehmann, B. & Kwito-Ribeiro, R. (2009). Ouro Preto found at Timbopeba iron-ore deposit, Minas Gerais, Brazil. Neues Jahr Geol Paleo Abh 253, 1523.CrossRefGoogle Scholar
Garuti, G., Proenza, J.A. & Zaccarini, F. (2007). Distribution and mineralogy of platinum-group elements in altered chromitites of the Campo Formoso layered intrusion (Bahia State, Brazil): Control by magmatic and hydrothermal processes. Mineral Petr 86, 159188.Google Scholar
Garuti, G., Pushkarev, E. & Zaccarini, F. (2002). Composition and paragenesis of Pt-alloys from Ural-Alaskan type chromitites at Kitlim and Uktus (the Urals, Russia). Can Mineral 40, 11271146.CrossRefGoogle Scholar
Garuti, G., Pushkarev, E.V., Zaccarini, F., Cabella, R. & Anikina, E.V. (2003). Chromite composition and platinum-group mineral assemblage in the Uktus Alaskan-type complex (Central Urals, Russia). Miner Deposita 38, 312326.Google Scholar
Garuti, G. & Zaccarini, F. (1997). In-situ alteration of platinum-group minerals at low temperature: Evidence from chromitites of the Vourinos complex (Greece). Can Mineral 35, 611626.Google Scholar
Garuti, G., Zaccarini, F., Cabella, R. & Fershtater, G. (1997). Occurrence of an unknown Ru-Os-Ir-Fe oxide in the chromitites of the Nurali ultramafic complex, southern Urals, Russia. Can Mineral 35, 14311440.Google Scholar
Garuti, G., Zaccarini, F., Moloshag, V. & Alimov, V. (1999). Platinum-group minerals as indicator of sulfur fugacity in ophiolitic upper mantle: An example from chromitites of the Ray-Iz ultramafic complex (Polar Urals, Russia). Can Mineral 37, 10991115.Google Scholar
Garuti, G., Zaccarini, F., Proenza, J.A., Thalhammer, O.A.R. & Angeli, N. (2012). Platinum-group minerals in chromitites of the Niquelândia layered intrusion (Central Goias, Brazil): Their magmatic origin and low-temperature reworking under serpentinization and lateritic weathering. Minerals 2, 365384.CrossRefGoogle Scholar
Graham, G.W., Weber, W.H., McBride, J.R. & Peters, C.R. (1991). Raman investigation of simple and complex oxides of platinum. J Raman Spect 22, 19.CrossRefGoogle Scholar
Grammatikopoulos, T., Kapsiotis, A., Tsikouras, B., Hatzipanagiotou, K., Zaccarini, F. & Garuti, G. (2011). Spinel composition, PGE geochemistry and mineralogy of the chromitites from the Vourinos ophiolite complex, northwestern Greece. Can Mineral 49, 15711598.CrossRefGoogle Scholar
Hattori, K.H., Takhashi, Y. & Auge, T. ( 2010). Mineralogy and origin of oxygen-bearing platinum-iron grains based of an X-ray absorption spectroscopy study. Am Mineral 95, 622630.Google Scholar
Jedwab, J. (2004). ‘Irite’ (Hermann, 1836/1841) from the Urals. Mineral Mag 68, 369394.Google Scholar
Jedwab, J. & Cassedanne, J. (1998). Historical observations on oxygen-bearing compounds of platinum and palladium in Minas Gerais, Brazil. Can Mineral 36, 887893.Google Scholar
Jedwab, J., Cassedanne, J., Criddle, A.J., du Ry, P., Ghysens, G., Meisser, N., Piret, P. & Stanley, C.J. (1993). Rediscovery of palladinite PdO from Itabira (Minas Gerais) and from Ruwe (Shaba, Zaire). Terra Abstr 5, 22.Google Scholar
Kapsiotis, A., Grammatikopoulos, T.A., Tsikouras, B., Hatzipanagiotou, K., Zaccarini, F. & Garuti, G. (2011). Mineralogy, composition and PGM of chromitites from Pefki, Pindos ophiolite complex (NW Greece): Evidence for progressively elevated fAs conditions in the upper mantle sequence. Mineral Petr 101, 129150.Google Scholar
Legendre, O. & Augé, T. (1993). Natural iridium oxide from platiniferous concentrates of the Antanambao-Manampotsy area, Madagascar. Compt Acad Sci Paris 316, 921927.Google Scholar
McDonald, I., Ohnenstetter, D., Ohnenstetter, M. & Vaughan, D.G. (1999). Palladium oxides in ultra-mafic complexes near Lavatrafo, Western Andriamana, Madagascar. Mineral Mag 63, 345352.Google Scholar
Melcher, F., Oberthür, T. & Lodziak, J. (2005). Modification of detrital platinum-group minerals from the eastern Bushveld complex, South Africa. Can Mineral 43, 17111734.CrossRefGoogle Scholar
Naldrett, A.J. (2004). Magmatic Sulfide Deposits: Geology, Geochemistry and Exploration. Heidelberg, Germany: Springer.CrossRefGoogle Scholar
Oberthür, T., Weiser, Th.W., Gast, L. & Kojonen, K. (2003). Geochemistry and mineralogy of the platinum-group elements at Hartley platinum mine, Zimbabwe. 2. Supergene redistribution in the oxidized main sulfide zone of the Great Dyke, and alluvial platinum-group minerals. Miner Deposita 38, 344355.Google Scholar
Olivo, G.R. & Gauthier, M. (1995). Palladium minerals from the Cauê iron mine, Itabira District, Minas Gerais, Brazil. Mineral Mag 59, 455463.CrossRefGoogle Scholar
Pan, P. & Wood, S.A. (1994). Solubility of Pt and Pd sulfides and Au metal in aqueous bisulfide solutions. Miner Deposita 29, 312326.Google Scholar
Prichard, H.M., , J.H.S. & Fisher, P.C. (2001). Platinum-group mineral assemblages and chromite composition in the altered and deformed Bacuri complex, Amapa, Northeastern Brazil. Can Mineral 39, 377396.Google Scholar
Proenza, J.A., Zaccarini, F., Escayola, M., Cabana, M.C., Schalamuk, I.B. & Garuti, G. (2008). Composition and textures of chromite and platinum-group minerals in chromitites of the western ophiolitic belt from Pampeans Ranges of Córdoba, Argentine. Ore Geol Rev 33, 3248.Google Scholar
Proenza, J.A., Zaccarini, F., Lewis, J.F., Garuti, G. & Longo, F. (2007). Platinum group element distribution and mineralogy in Loma Peguera chromitites, Loma Caribe peridotite, Dominican Republic. Can Mineral 45, 631648.CrossRefGoogle Scholar
Rudashevsky, N.S., Garuti, G., Kretser, Y.L., Rudashevsky, V.N., Zaccarini, F. & Andersen, J.C.Ø. (2002). The separation of accessory minerals from rocks and ores using the hydroseparation (HS) technology – Method and application to the CHR-2 chromitite of the Niquelandia intrusion, Brazil. Trans Inst Min Metall B: Appl Earth Sci 111, 8794.Google Scholar
Shcheka, G.G., Lehmann, B. & Solianik, A.N. (2005). Pd-bearing oxides and hydrated oxides in mertieite-II crystals from alluvial sediments of the Darya river, Aldan Shield, Russia. Mineral Mag 69, 981994.Google Scholar
Tolstykh, N.D., Krivenko, A.P., Lavrentev, Y.G., Tolstykh, O.N. & Korolyuk, V.N. (2000). Oxides of the Pd-Sb-Bi system from the Chiney Massif (Aldan Shield, Russia). Eur J Mineral 12, 431440.Google Scholar
Tsoupas, G. & Economou-Eliopoulos, M. (2007). High PGE contents and extremely abundant PGE-minerals hosted in chromitites from the Veria ophiolite complex, northern Greece. Ore Geol Rev 33, 319.Google Scholar
Tuisku, P. (2012). Inclusions of ruthenian rutile and titanian RuO2 in isoferroplatinum nuggets from Finnish Lapland. Can Mineral 50, 511521.CrossRefGoogle Scholar
Uysal, I., Zaccarini, F., Sadiklar, M.B., Bernhardt, H.J., Bigi, S. & Garuti, G. (2009). Occurrence of rare Ru-Fe-Os-Ir-oxide and associated platinum-group minerals (PGM) in the chromitite of Mugla ophiolite, SW-Turkey. Neues Jahr Mineral Abh 185, 323333.Google Scholar
Vymazalová, A., Zaccarini, F. & Bakker, R.J. (2014). Raman spectroscopy characterisation of synthetic platinum-group minerals (PGM) in the Pd–Sn–Te and Pd–Pb–Te ternary systems. Eur J Mineral 26, 711716.CrossRefGoogle Scholar
Weber, W.H., Bairs, R.J. & Graham, G.W. (1988). Raman investigation of palladium oxide, rhodium sesquioxide and palladium rhodium dioxide. J Raman Spect 19, 239244.CrossRefGoogle Scholar
Weiser, T.W. & Bachmann, H.G. (1999). Platinum-group minerals from the Ankora river area, Papua New Guinea. Can Mineral 37, 11311145.Google Scholar
Zaccarini, F., Bakker, R.J., Garuti, G., Aiglsperger, T., Thalhammer, O.A.R., Campos, L., Proenza, J.A. & Lewis, J. (2010). Platinum group minerals in chromitite of Costa Rica: Mineralogical characterization by electron microprobe and Raman-spectroscopy. Bol Soc Geol Mex 62, 161171.Google Scholar
Zaccarini, F., Bindi, L., Garuti, G. & Proenza, J. (2014). Ruthenium and magnetite intergrowths from the Loma Peguera chromitite, Dominican Republic, and relevance to the debate over the existence of platinum-group element oxides and hydroxides. Can Mineral 52, 617624.Google Scholar
Zaccarini, F., Garuti, G. & Pushkarev, E. (2011). Unusually platinum group elements(PGE)-rich chromitite in the Butyrin vein of the Kytlym Uralian-Alaskan complex, northern Urals. Can Mineral 49, 14131431.Google Scholar
Zaccarini, F., Proenza, J.A., Ortega-Gutierrez, F. & Garuti, G. (2005). Platinum group minerals in ophiolitic chromitites from Tehuitzingo (Acatlan complex, Southern Mexico): Implications for postmagmatic modification. Mineral Petr 84, 147168.CrossRefGoogle Scholar
Zaccarini, F., Proenza, J.A., Rudashevsky, N.S., Cabri, L.J., Garuti, G., Rudashevsky, V.N., Melgarejo, J.C., Lewis, J.F., Longo, F., Bakker, R. & Stanley, C.J. (2009). The Loma Peguera ophiolitic chromitite (Central Dominican republic): A source of new platinum group minerals (PGM) species. Neues Jahr Mineral Abh 185, 335349.Google Scholar
Zaccarini, F., Pushkarev, E., Fershatater, G. & Garuti, G. (2004). Composition and mineralogy of PGE-rich chromitites in the Nurali lherzolite-gabbro complex, southern Urals. Can Mineral 42, 545562.Google Scholar