Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T11:34:50.443Z Has data issue: false hasContentIssue false

Electron Source Brightness and Illumination Semi-Angle Distribution Measurement in a Transmission Electron Microscope

Published online by Cambridge University Press:  21 May 2018

Felix Börrnert
Affiliation:
Materialwissenschaftliche Elektronenmikroskopie, Universität Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
Julian Renner
Affiliation:
Materialwissenschaftliche Elektronenmikroskopie, Universität Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
Ute Kaiser
Affiliation:
Materialwissenschaftliche Elektronenmikroskopie, Universität Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany
Get access

Abstract

The electron source brightness is an important parameter of an electron microscope. Reliable and easy brightness measurement routes are not easily found. A determination method for the illumination semi-angle distribution in transmission electron microscopy is even less well documented. Herein, we report a facile measurement route for both entities and demonstrate it on a state-of-the-art instrument. The reduced axial brightness of the FEI X-FEG with a monochromator was determined to be larger than 108 A/(m2 sr V).

Type
Software and Instrumentation
Copyright
© Microscopy Society of America 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Cite this article: Börrnert F, Renner J, Kaiser U (2018) Electron Source Brightness and Illumination Semi-Angle Distribution Measurement in a Transmission Electron Microscope. Microsc Microanal24(3): 249–255. doi: 10.1017/S1431927618000223

References

Barthel, J and Thust, A (2008) Quantification of the information limit of transmission electron microscopes. Phys Rev Lett 101, 2008011–4.Google Scholar
Erni, R (2010) Aberration-Corrected Imaging in Transmission Electron Microscopy. London: Imperial College Press.Google Scholar
Frank, J (1976) Determination of source size and energy spread from electron micrographs using the method of Young’s fringes. Optik 44, 379391.Google Scholar
Hosokawa, F, Suzuki, M and Ibe, K (1991) Determination of the effective source from its image in the backfocal plane of the objective lens. Ultramicroscopy 36, 367373.CrossRefGoogle Scholar
Lichte, H, Börrnert, F, Lenk, A, Lubk, A, Röder, F, Sickmann, J, Sturm, S, Vogel, K and Wolf, D (2013) Electron holography for fields in solids: Problems and progress. Ultramicroscopy 134, 126134.Google Scholar
Linck, M, Hartel, P, Uhlemann, S, Kahl, F, Müller, H, Zach, J, Haider, M, Niestadt, M, Bischoff, M, Biskupek, J, Lee, Z, Lehnert, T, Börrnert, F and Kaiser, U (2016) Chromatic aberration correction for atomic resolution TEM imaging from 80 kV to 20 kV. Phys Rev Lett 117, 076101451076101455.Google Scholar
Löffler, KH (1964) Erzeugung freitragender Mikroobjekte durch elektronenstrahlaktivierten Kohlefolienabbau, Dissertation, Berlin.Google Scholar
Müller, H, Uhlemann, S, Hartel, P and Haider, M (2006) Advancing the hexapole C s -corrector for the scanning transmission electron microscope. Microsc Microanal 12, 442455.Google Scholar
Reimer, L and Kohl, H (2008) Transmission Electron Microscopy, Springer Series in Optical Sciences, 5th ed. New York: Springer Science+Business Media, LLC.Google Scholar
Röder, F, Lubk, A, Wolf, D and Niermann, T (2014) Noise estimation for off-axis electron holography. Ultramicroscopy 144, 3242.Google Scholar
Tiemeijer, PC, Bischoff, M, Freitag, B and Kisielowski, C (2012 a) Using a monochromator to improve the resolution in TEM to below 0.5 Å. Part I: Creating highly coherent monochromated illumination. Ultramicroscopy 114, 7181.Google Scholar
Tiemeijer, PC, Bischoff, M, Freitag, B and Kisielowski, C (2012 b) Using a monochromator to improve the resolution in TEM to below 0.5 Å. Part II: Application to focal series reconstruction. Ultramicroscopy 118, 3543.Google Scholar
Tsuji, M and St. John Manley, R (1983) Determination of the illuminating angle and defocus spread in transmission electron microscopy. J Microsc 130, 9398.CrossRefGoogle Scholar
Uhlemann, S, Müller, H, Hartel, P, Zach, J and Haider, M (2013) Thermal magnetic field noise limits resolution in transmission electron microscopy. Phys Rev Lett 111, 046101451046101455.Google Scholar
van Veen, AHV, Hagen, CW, Barth, JE and Kruit, P (2001) Reduced brightness of the ZrO/W Schottky electron emitter. J Vacuum Sci Technol B 19, 2038.Google Scholar
Williams, DB and Carter, CB (2009) Transmission Electron Microscopy, 2nd ed. New York: Springer Science+Business Media, LLC.Google Scholar
Zemlin, F and Schiske, P (1980) Measurement of the phase contrast transfer function and the cross-correlation peak using Young interference fringes. Ultramicroscopy 5, 139145.Google Scholar