Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T10:38:29.907Z Has data issue: false hasContentIssue false

Electronic and Magnetic Structure of LaSr-2×4 Manganese Oxide Molecular Sieve Nanowires

Published online by Cambridge University Press:  16 April 2014

Jaume Gazquez*
Affiliation:
Institut de Ciència de Materials de Barcelona ICMAB, Consejo Superior de Investigaciones Científicas CSIC, 08193 Bellaterra, Spain
Adrián Carretero-Genevrier
Affiliation:
Laboratoire Chimie de la Matière Condensée, UMR UPMC-Collège de France-CNRS 7574, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris, France Institut des Nanotechnologies de Lyon (INL) CNRS - Ecole Centrale de Lyon., 36 avenue Guy de Collongue, 69134 Ecully
Martí Gich
Affiliation:
Institut de Ciència de Materials de Barcelona ICMAB, Consejo Superior de Investigaciones Científicas CSIC, 08193 Bellaterra, Spain
Narcís Mestres
Affiliation:
Institut de Ciència de Materials de Barcelona ICMAB, Consejo Superior de Investigaciones Científicas CSIC, 08193 Bellaterra, Spain
María Varela
Affiliation:
Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA Departamento de Física Aplicada III & Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid 28040, Spain
*
*Corresponding author.jgazqueza@gmail.com
Get access

Abstract

In this study we combine scanning transmission electron microscopy, electron energy loss spectroscopy and electron magnetic circular dichroism to get new insights into the electronic and magnetic structure of LaSr-2×4 manganese oxide molecular sieve nanowires integrated on a silicon substrate. These nanowires exhibit ferromagnetism with strongly enhanced Curie temperature (Tc>500 K), and we show that the new crystallographic structure of these LaSr-2×4 nanowires involves spin orbital coupling and a mixed-valence Mn3+/Mn4+, which is a must for ferromagnetic ordering to appear, in line with the standard double exchange explanation.

Type
EDGE Special Issue
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Botton, G.A., Appel, C.C., Horsewell, A. & Stobbs, W.M. (1995). Quantification of the EELS near-edge structures to study Mn doping in oxides. J Microsc 180, 211216.CrossRefGoogle Scholar
Calmels, L., Houdellier, F., Warot-Fonrose, B., Gatel, C., Hÿtch, M., Serin, V., Snoeck, E. & Schattschneider, P. (2007). Experimental application of sum rules for electron energy loss magnetic chiral dichroism. Phys Rev B 76, 060409.Google Scholar
Carretero-Genevrier, A., Gázquez, J., Idrobo, J.C., Oró, J., Arbiol, J., Varela, M., Ferain, E., Rodríguez-Carvajal, J., Puig, T., Mestres, N. & Obradors, X. (2011). Single crystalline La0.7Sr0.3MnO3 molecular sieve nanowires with high temperature ferromagnetism. J Am Chem Soc 133, 40534061.Google Scholar
Carretero-Genevrier, A., Gazquez, J., Magén, C., Varela, M., Ferain, E., Puig, T., Mestres, N. & Obradors, X. (2012). Chemical synthesis of oriented ferromagnetic LaSr-2×4 manganese oxide molecular sieve nanowires. Chem Commun (Camb) 48, 62236225.CrossRefGoogle Scholar
Carretero-Genevrier, A., Gázquez, J., Puig, T., Mestres, N., Sandiumenge, F., Obradors, X. & Ferain, E. (2010). Vertical (La,Sr)MnO3 nanorods from track-etched polymers directly buffering substrates. Adv Functional Mater 20, 892897.Google Scholar
Carretero-Genevrier, A., Gich, M., Picas, L., Gazquez, J., Drisko, G.L., Boissiere, C., Grosso, D., Rodriguez-Carvajal, J. & Sanchez, C. (2013). Soft-chemistry-based routes to epitaxial α-quartz thin films with tunable textures. Science 340, 827831.Google Scholar
Carretero-Genevrier, A., Mestres, N., Puig, T., Hassini, A., Oró, J., Pomar, A., Sandiumenge, F., Obradors, X. & Ferain, E. (2008). Single-crystalline La0.7Sr0.3MnO3 nanowires by polymer-template-directed chemical solution synthesis. Adv Mater 20, 36723677.Google Scholar
Carretero-Genevrier, A., Puig, T., Obradors, X. & Mestres, N. (2013). Ferromagnetic 1D oxide nanostructures grown from chemical solutions in confined geometries. Chem Soc Rev 43, 20422054.Google Scholar
Chen, C.T.T., Idzerda, Y.U.U., Lin, H.J.J., Smith, N.V.V., Meigs, G., Chaban, E., Ho, G.H.H., Pellegrin, E. & Sette, F. (1995). Experimental confirmation of the X-ray magnetic circular dichroism sum rules for iron and cobalt. Phys Rev Lett 75, 152155.CrossRefGoogle ScholarPubMed
Dagotto, E., Hotta, T. & Moreo, A. (2001). Colossal magnetoresistant materials: The key role of phase separation. Phys Rep 344, 1153.CrossRefGoogle Scholar
Lidbaum, H., Rusz, J., Rubino, S., Liebig, A., Hjörvarsson, B., Oppeneer, P.M., Eriksson, O. & Leifer, K. (2010). Reciprocal and real space maps for EMCD experiments. Ultramicroscopy 11, 13801389.Google Scholar
Luo, W., Varela, M., Tao, J., Pennycook, S.J. & Pantelides, S.T. (2009). Electronic and crystal-field effects in the fine structure of electron energy-loss spectra of manganites. Phys Rev B 79, 52405.CrossRefGoogle Scholar
Nakagawa, N., Hwang, H.Y. & Muller, D.A. (2006). Why some interfaces cannot be sharp. Nat Mater 5, 204209.Google Scholar
Rask, J.H., Miner, B.A. & Buseck, P.R. (1987). Determination of manganese oxidation states in solids by electron energy-loss spectroscopy. Ultramicroscopy 21, 321326.Google Scholar
Rziha, T., Gies, H. & Rius, J. (1996). RUB-7, a new synthetic manganese oxide structure type with a 2×4 tunnel. Eur J Mineral 8, 675686.CrossRefGoogle Scholar
Salafranca, J., Gazquez, J., Pérez, N., Labarta, A., Pantelides, S.T., Pennycook, S.J., Batlle, X. & Varela, M. (2012). Surfactant organic molecules restore magnetism in metal-oxide nanoparticle surfaces. Nano Lett 12, 24992503.Google Scholar
Schattschneider, P., Rubino, S., Hébert, C., Rusz, J., Kunes, J., Novák, P., Carlino, E., Fabrizioli, M., Panaccione, G. & Rossi, G. (2006). Detection of magnetic circular dichroism using a transmission electron microscope. Nature 441, 486488.Google Scholar
Schattschneider, P., Stöger-Pollach, M., Rubino, S., Sperl, M., Hurm, C., Zweck, J. & Rusz, J. (2008). Detection of magnetic circular dichroism on the two-nanometer scale. Phys Rev B 78, 104413.Google Scholar
Varela, M., Findlay, S., Lupini, A., Christen, H., Borisevich, A., Dellby, N., Krivanek, O., Nellist, P., Oxley, M., Allen, L. & Pennycook, S. (2004). Spectroscopic imaging of single atoms within a bulk solid. Phys Rev Lett 92, 095502.Google Scholar
Varela, M., Lupini, A.R., Benthem, K., Van Borisevich, A.Y., Chisholm, M.F.F., Shibata, N., Abe, E., Pennycook, S.J.J., Lupini, A.R. & Borisevich, A.Y. (2005). Materials characterization in the aberration-corrected scanning transmission electron microscope. Ann Rev Mater Res 35, 539569.Google Scholar
Varela, M., Oxley, M., Luo, W., Tao, J., Watanabe, M., Lupini, A., Pantelides, S. & Pennycook, S. (2009). Atomic-resolution imaging of oxidation states in manganites. Phys Rev B 79, 085117.Google Scholar
Zhang, Z.H., Tao, H.L., He, M. & Li, Q. (2011). Origination of electron magnetic chiral dichroism in cobalt-doped ZnO dilute magnetic semiconductors. Scr Mater 65, 367370.CrossRefGoogle Scholar
Zhang, Z.H., Wang, X., Xu, J.B., Muller, S., Ronning, C. & Li, Q. (2009). Evidence of intrinsic ferromagnetism in individual dilute magnetic semiconducting nanostructures. Nat Nanotech 4, 523527.Google Scholar