Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-28T02:56:50.022Z Has data issue: false hasContentIssue false

Environmental Transmission Electron Microscopy in an Aberration-Corrected Environment

Published online by Cambridge University Press:  12 June 2012

Thomas W. Hansen*
Affiliation:
Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
Jakob B. Wagner
Affiliation:
Center for Electron Nanoscopy, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
*
Corresponding author. E-mail: twh@cen.dtu.dk
Get access

Abstract

The increasing use of environmental transmission electron microscopy (ETEM) in materials science provides exciting new possibilities for investigating chemical reactions and understanding both the interaction of fast electrons with gas molecules and the effect of the presence of gas on high-resolution imaging. A gaseous atmosphere in the pole-piece gap of the objective lens of the microscope alters both the incoming electron wave prior to interaction with the sample and the outgoing wave below the sample. Whereas conventional TEM samples are usually thin (below 100 nm), the gas in the environmental cell fills the entire gap between the pole pieces and is thus not spatially localized. By using an FEI Titan environmental transmission electron microscope equipped with a monochromator and an aberration corrector on the objective lens, we have investigated the effects on imaging and spectroscopy caused by the presence of the gas.

Type
Special Section: Aberration-Corrected Electron Microscopy
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Borgna, A., Lenormand, F., Garetto, T., Apesteguia, C.R. & Moraweck, B. (1992). Sintering of Pt/Al2O3 reforming catalysts—EXAFS study of the behavior of metal particles under oxidizing atmosphere. Catal Lett 13, 175188.CrossRefGoogle Scholar
Boyes, E.D. & Gai, P.L. (1997). Environmental high resolution electron microscopy and applications to chemical science. Ultramicroscopy 67, 219232.CrossRefGoogle Scholar
Challa, S.R., Delariva, A.T., Hansen, T.W., Helveg, S., Sehested, J., Hansen, P.L., Garzon, F. & Datye, A.K. (2011). Relating rates of catalyst sintering to the disappearance of individual nanoparticles during Ostwald ripening. J Am Chem Soc 133, 2067220675.CrossRefGoogle Scholar
Chaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxall, A., Castle, L., Aitken, R. & Watkins, R. (2008). Applications and implications of nanotechnologies for the food sector. Food Addit Contam 25, 241258.CrossRefGoogle ScholarPubMed
Creemer, J.F., Helveg, S., Hoveling, G.H., Ullmann, S., Molenbroek, A.M., Sarro, P.M. & Zandbergen, H.W. (2008). Atomic-scale electron microscopy at ambient pressure. Ultramicroscopy 108, 993998.CrossRefGoogle ScholarPubMed
De Jonge, N., Bigelow, W.C. & Veith, G.M. (2010). Atmospheric pressure scanning transmission electron microscopy. Nano Lett 10, 10281031.CrossRefGoogle ScholarPubMed
Flynn, P.C. & Wanke, S.E. (1974). A model of supported metal catalyst sintering—2. Application of model. J Catal 34, 400410.CrossRefGoogle Scholar
Girit, C.O., Meyer, J.C., Erni, R., Rossell, M.D., Kisielowski, C., Yang, L., Park, C.H., Crommie, M.F., Cohen, M.L., Louie, S.G. & Zettl, A. (2009). Graphene at the edge: Stability and dynamics. Science 323, 17051708.CrossRefGoogle ScholarPubMed
Granqvist, C.G. & Buhrman, R.A. (1976). Size distributions for supported metal catalysts—Coalescence growth versus Ostwald ripening. J Catal 42, 477479.CrossRefGoogle Scholar
Gryaznov, V.G., Kaprelov, A.M. & Belov, A.Y. (1991). Real temperature of nanoparticles in electron microscope beams. Philos Mag Lett 63, 275279.CrossRefGoogle Scholar
Hampe, W. (1958). Beitrag zur Deutung der anomalen optichen Eigenschaften feinstteiliger Metallkolloide in grosser Konzentration. 1. Bestimmung des Fullfaktors dunner Schichten eines Kolloids Gold-SiO2. Z Phys 152, 470475.CrossRefGoogle Scholar
Hansen, T.W., Wagner, J.B. & Dunin-Borkowski, R.E. (2010). Aberration corrected and monochromated environmental transmission electron microscopy: Challenges and prospects for materials science. Mater Sci Technol 26, 13381344.CrossRefGoogle Scholar
Hashimoto, H. & Naiki, T. (1968). High temperature gas reaction specimen chamber for an electron microscope. Jpn J Appl Phys 7, 946952.CrossRefGoogle Scholar
Herman, D.S. & Rhodin, T.N. (1966). Electrical conduction between metallic microparticles. J Appl Phys 37, 15941602.CrossRefGoogle Scholar
Howe, J.M., Yokota, T., Murayama, M. & Jesser, W.A. (2004). Effects of heat and electron irradiation on the melting behavior of Al-Si alloy particles and motion of the Al nanosphere within. J Electron Microsc 53, 107114.CrossRefGoogle Scholar
Rasmussen, F.B., Sehested, J., Teunissen, H.T., Molenbroek, A.M. & Clausen, B.S. (2004). Sintering of Ni/Al2O3 catalysts studied by anomalous small angle X-ray scattering. Appl Catal A 267, 165173.CrossRefGoogle Scholar
Reimer, L. & Kohl, H. (2008). Transmission Electron Microscopy: Physics of Image Formation. New York: Springer.Google Scholar
Rostrup-Nielsen, J.R. (1983). Catalytic Stream Reforming. Berlin-Heidelberg: Springer.Google Scholar
Ruska, E. (1942). Article on the super-microscopic image in high pressures. Kolloid-Z 100, 212219.CrossRefGoogle Scholar
Salata, O.V. (2004). Applications of nanoparticles in biology and medicine. J Nanobiotechnol 2, 3.CrossRefGoogle ScholarPubMed
Simonsen, S.B., Chorkendorff, I., Dahl, S., Skoglundh, M., Sehested, J. & Helveg, S. (2010). Direct observations of oxygen-induced platinum nanoparticle ripening studied by in situ TEM. J Am Chem Soc 132, 79687975.CrossRefGoogle ScholarPubMed
Smith, B.W. & Luzzi, D.E. (2001). Electron irradiation effects in single wall carbon nanotubes. J Appl Phys 90, 35093515.CrossRefGoogle Scholar
Sychugov, I., Nakayama, Y. & Mitsuishi, K. (2010). Sub-10 nm crystalline silicon nanostructures by electron beam induced deposition lithography. Nanotechnology 21, 285307. CrossRefGoogle ScholarPubMed
Tiede, K., Boxall, A.B.A., Tear, S.P., Lewis, J., David, H. & Hassellov, M. (2008). Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam 25, 795821.CrossRefGoogle ScholarPubMed
Tsetseris, L. & Pantelides, S.T. (2009). Adatom complexes and self-healing mechanisms on graphene and single-wall carbon nanotubes. Carbon 47, 901908.CrossRefGoogle Scholar
van Dorp, W.F., Lazic, I., Beyer, A., Golzhauser, A., Wagner, J.B., Hansen, T.W. & Hagen, C.W. (2011). Ultrahigh resolution focused electron beam induced processing: The effect of substrate thickness. Nanotechnology 22, 115303. CrossRefGoogle ScholarPubMed
Wanke, S.E. (1977). Sintering mechanism of supported metal catalysts. J Catal 46, 234237.CrossRefGoogle Scholar
Więckowski, A., Savinova, E. & Vayenas, C. (2003). Catalysis and Electrocatalysis at Nanoparticle Surfaces. New York: Marcel Dekker.CrossRefGoogle Scholar
Wynblatt, P. & Gjostein, N.A. (1975). Supported metal crystallites. Prog Solid State Chem 9, 2158.CrossRefGoogle Scholar
Yaguchi, T., Suzuki, M., Watabe, A., Nagakubo, Y., Ueda, K. & Kamino, T. (2011). Development of a high temperature-atmospheric pressure environmental cell for high-resolution TEM. J Electron Microsc 60, 217225.CrossRefGoogle ScholarPubMed