No CrossRef data available.
Article contents
Fluctuation Microscopy: A New Class of Microscopy Techniques for Probing Medium Range Order in Amorphous Materials
Published online by Cambridge University Press: 02 July 2020
Extract
Amorphous materials are devoid of periodic long range order, but at the nearest-neighbor level they possess a high degree of short-range order. In amorphous tetrahedral semiconductors, such as Si and Ge, this short-range order arises because each atom attempts to satisfy four bonds arranged as a regular tetrahedron. It is the rotations about each bond, from the second-nearest-neighbor outwards, that result in the loss of long-range order. It is apparent from modeling of amorphous materials, that there is considerable flexibility as to how rapidly the medium-range-order diminishes. The continuous random network (CRN) is a hypothetical tetrahedral extended structure wherein the atoms possess full four-connected coordination, but have minimal medium-range order. However, real amorphous materials infrequently exhibit true CRN-like topologies. Traditionally, diffraction has been used to study short- and medium-range order in amorphous materials. Assuming kinematical scattering, and that every atom has a similar environment, a radial distribution function (RDF) can be extracted which is sensitive only to the averaged atom pair-correlations out to ∼1 nm.
- Type
- Nanophase and Amorphous Materials
- Information
- Copyright
- Copyright © Microscopy Society of America