Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-05T22:03:45.839Z Has data issue: false hasContentIssue false

Forbidden Reflection Moiré Patterns in Metal-2D Material Interfaces

Published online by Cambridge University Press:  30 July 2020

Kate Reidy
Affiliation:
Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
Georgios Varnavides
Affiliation:
Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
Joachim Dahl Thomsen
Affiliation:
Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
Arthur Blackburn
Affiliation:
University of Victoria, Victoria, British Columbia, Canada
Thang Pham
Affiliation:
Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
Abinash Kumar
Affiliation:
Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
James LeBeau
Affiliation:
Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
Frances Ross
Affiliation:
Massachusetts Institute of Technology, Cambridge, Massachusetts, United States

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
New Frontiers in Electron Microscopy of Two-dimensional Materials
Copyright
Copyright © Microscopy Society of America 2020

References

Oster, G. & Nishijima, Y. Moiré Patterns. Scientific American 208, 5463 (1963).10.1038/scientificamerican0563-54CrossRefGoogle Scholar
Bassett, G., Menter, J. & Pashley, D. Moiré patterns on electron micrographs, and their application to the study of dislocations in metals. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 246, 345368 (1958).Google Scholar
Woods, C. R. et al. Commensurate-incommensurate transition in graphene on hexagonal boron nitride. Nat. Phys. 10, 451456 (2014).10.1038/nphys2954CrossRefGoogle Scholar
Zeller, P. et al. What are the possible moiré patterns of graphene on hexagonally packed surfaces? Universal solution for hexagonal coincidence lattices, derived by a geometric construction. New J. Phys. 16, (2014).10.1088/1367-2630/16/8/083028CrossRefGoogle Scholar
Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 4350 (2018).10.1038/nature26160CrossRefGoogle ScholarPubMed
Sundaram, R. S. et al. The graphene-gold interface and its implications for nanoelectronics. Nano Lett. 11, 38333837 (2011).10.1021/nl201907uCrossRefGoogle ScholarPubMed
Wang, Y. et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568, 7074 (2019).10.1038/s41586-019-1052-3CrossRefGoogle Scholar
Buff, P.-A., Flueli, M., Spycher, R., Stadelmann, P. & Borelb, J.-P. Crystallographic Structure of Small Gold Particles studied by High-resolution Electron Microscopy. Faraday Discuss 92, (1991).Google Scholar
Reyes-Gasga, J., Gómez-Rodríguez, A., Gao, X. & José-Yacamán, M. On the interpretation of the forbidden spots observed in the electron diffraction patterns of flat Au triangular nanoparticles. Ultramicroscopy 108, 929936 (2008).10.1016/j.ultramic.2008.03.005CrossRefGoogle ScholarPubMed