Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-11T01:56:11.834Z Has data issue: false hasContentIssue false

Formation of Nanoporous Gold Studied by Transmission Electron Backscatter Diffraction

Published online by Cambridge University Press:  30 October 2015

Leo T.H. de Jeer
Affiliation:
Department of Applied Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
Diego Ribas Gomes
Affiliation:
Department of Applied Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
Jorrit E. Nijholt
Affiliation:
Department of Applied Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
Rik van Bremen
Affiliation:
Department of Applied Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
Václav Ocelík*
Affiliation:
Department of Applied Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
Jeff Th.M. De Hosson
Affiliation:
Department of Applied Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
*
*Corresponding author. v.ocelik@rug.nl
Get access

Abstract

Transmission electron backscatter diffraction (t-EBSD) was used to investigate the effect of dealloying on the microstructure of 140-nm thin gold foils. Statistical and local comparisons of the microstructure between the nonetched and nanoporous gold foils were made. Analyses of crystallographic texture, misorientation distribution, and grain structure clearly prove that during the dealloying manufacturing process of nanoporous materials the crystallographic texture is enhanced significantly with a clear decrease of internal strain, whereas maintaining the grain structure.

Type
Materials Applications and Techniques
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abhijit Brahme, Y.S., Staraselski, Y., Inal, K., & Mishra, R.K. (2012). Determination of the minimum scan size to obtain representative textures by electron backscatter diffraction. Metallurg Mater Trans A 43, 52985307.CrossRefGoogle Scholar
Brodusch, N., Demers, H. & Gauvin, R. (2013 a). Nanometres-resolution Kikuchi patterns from materials science specimens with transmission electron forward scatter diffraction in the scanning electron microscope. J Microsc 250, 114.CrossRefGoogle ScholarPubMed
Brodusch, N., Demers, H., Trudeau, M. & Gauvin, R. (2013 b). Acquisition parameters optimization of a transmission electron forward scatter diffraction system in a cold-field emission scanning electron microscope for nanomaterials characterization. Scanning 35, 375386.CrossRefGoogle Scholar
Broers, A.N., Hoole, A.C.F. & Ryan, J.M. (1996). Electron beam lithography—Resolution limits. Microelectron Eng 32, 131142.CrossRefGoogle Scholar
Chen, D., Kuo, J.-C. & Wu, W.-T. (2011). Effect of microscopic parameters on EBSD spatial resolution. Ultramicroscopy 111, 14881494.CrossRefGoogle ScholarPubMed
Detsi, E., Punzhin, S., Rao, J., Onck, P.R. & De Hosson, J.T.M. (2012). Enhanced strain in functional nanoporous gold with a dual microscopic length scale structure. ACS Nano 6, 37343744.CrossRefGoogle ScholarPubMed
Detsi, E., van de Schootbrugge, M., Punzhin, S., Onck, P.R. & De Hosson, J.T.M. (2011). On tuning the morphology of nanoporous gold. Scr Mater 64, 319322.CrossRefGoogle Scholar
Ding, Y., Kim, Y.-J. & Erlebacher, J. (2004). Nanoporous gold leaf: “ancient technology”/advanced material. Adv Mater 16, 18971900.CrossRefGoogle Scholar
Dotzler, C.J., Ingham, B., Illy, B.N., Wallwork, K., Ryan, M.P. & Toney, M.F. (2011). In situ observation of strain development and porosity evolution in nanoporous gold foils. Adv Funct Mater 21, 39383946.CrossRefGoogle Scholar
Egerton, R.F., Li, P. & Malac, M. (2004). Radiation damage in the TEM and SEM. Micron 35, 399409.CrossRefGoogle ScholarPubMed
Erlebacher, J., Aziz, M.J., Karma, A., Dimitrov, N. & Sieradzki, K. (2001). Evolution of nanoporosity in dealloying. Nature 410, 450453.CrossRefGoogle ScholarPubMed
Faraday, M. (1857). The Bakerian lecture: Experimental relations of gold (and other metals) to light. Philos Trans R Soc Lond 147, 145181.Google Scholar
Geiss, R., Keller, R., Sitzman, S. & Rice, P. (2011). New method of transmission electron diffraction to characterize nanomaterials in the SEM. Microsc Microanal 17, 386387.CrossRefGoogle Scholar
Hakamada, M. & Mabuchi, M. (2008). Microstructural evolution in nanoporous gold by thermal and acid treatments. Mater Lett 62, 483486.CrossRefGoogle Scholar
Hirsch, P.B., Kelly, A. & Menter, J.W. (1955). The structure of cold worked gold I: A study by electron diffraction. Proc Phys Soc 68, 11321145.CrossRefGoogle Scholar
Jin, H.-J., Kurmanaeva, L., Schmauch, J., Rösner, H., Ivanisenko, Y. & Weissmüller, J. (2009). Deforming nanoporous metal: Role of lattice coherency. Acta Mater 57, 26652672.CrossRefGoogle Scholar
Keller, R.R. & Geiss, R.H. (2012). Transmission EBSD from 10 nm domains in a scanning electron microscope. J Microsc 245, 245251.CrossRefGoogle Scholar
Lang, X., Qian, L., Guan, P., Zi, J. & Chen, M. (2011). Localized surface plasmon resonance of nanoporous gold. Appl Phys Lett 98, 093701.CrossRefGoogle Scholar
Li, M., Du, Y., Zhao, F., Zeng, J., Mohan, C. & Shih, W.-C. (2015). Reagent-and separation-free measurements of urine creatinine concentration using stamping surface enhanced Raman scattering (S-SERS). Biomedl Opt Express 6, 849858.CrossRefGoogle ScholarPubMed
Nicholson, E.D. (1979). The ancient craft of gold beating. Gold Bull 12, 161166.CrossRefGoogle Scholar
Nutting, J. & Nuttall, J.L. (1977). The malleability of gold. Gold Bull 10, 28.CrossRefGoogle Scholar
Petegem, S.V., Brandstetter, S., Maass, R., Hodge, A.M., El-Dasher, B.S., Biener, J., Schmitt, B., Borca, C. & Swygenhoven, H.V. (2009). On the microstructure of nanoporous gold: An X-ray diffraction study. Nano Lett 9, 11581163.CrossRefGoogle ScholarPubMed
Santos, G.M., Zhao, F., Zeng, J., Li, M. & Shih, W.-C. (2015). Label-free, zeptomole cancer biomarker detection by surface-enhanced fluorescence on nanoporous gold disk plasmonic nanoparticles. Journal of Biophotonics , doi:10.1002/jbio.201400134.CrossRefGoogle ScholarPubMed
Saraf, L. (2011). Kernel average misorientation confidence index correlation from FIB sliced Ni-Fe-Cr alloy surface. Microsc Microanal 17, 424425.CrossRefGoogle Scholar
Suzuki, S. (2013). Features of transmission EBSD and its application. JOM 65, 12541263.CrossRefGoogle Scholar
Thomsen, E.G. & Thomsen, H.H. (1978). Hammer forging of thin sections in antiquity. J Appl Metalworking 1, 5058.CrossRefGoogle Scholar
Thomson, G.P. (1928). Experiments on the diffraction of cathode rays. Proc R Soc Lond A Math Phys Sci 117, 600609.Google Scholar
Trimby, P.W. (2012). Orientation mapping of nanostructured materials using transmission Kikuchi diffraction in the scanning electron microscope. Ultramicroscopy 120, 1624.CrossRefGoogle ScholarPubMed
Van Bremen, R., Ribas Gomes, D., Jeer, L.T.H., de, Ocelík, V. & De Hosson, J.T.M. (2015). On the optimum resolution of transmission – Electron backscattered diffraction (t-EBSD), submitted to Ultramicroscopy.CrossRefGoogle Scholar
Wittstock, A., Zielasek, V., Biener, J., Friend, C.M. & Bäumer, M. (2010). Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 327, 319322.CrossRefGoogle ScholarPubMed
Wright, S.I. & Nowell, M.M. (2006). EBSD image quality mapping. Microsc Microanal 12, 7284.CrossRefGoogle ScholarPubMed
Wright, S.I., Nowell, M.M. & Field, D.P. (2011). A review of strain analysis using electron backscatter diffraction. Microsc Microanal 17, 316329.CrossRefGoogle ScholarPubMed
Zaefferer, S. (2007). On the formation mechanisms, spatial resolution and intensity of backscatter Kikuchi patterns. Ultramicroscopy 107, 254266.CrossRefGoogle ScholarPubMed
Zaefferer, S. (2011). A critical review of orientation microscopy in SEM and TEM. Crystal Res Technol 46, 607628.CrossRefGoogle Scholar