Article contents
High-Resolution Imaging and Spectroscopy at High Pressure: A Novel Liquid Cell for the Transmission Electron Microscope
Published online by Cambridge University Press: 09 December 2015
Abstract
We demonstrate quantitative core-loss electron energy-loss spectroscopy of iron oxide nanoparticles and imaging resolution of Ag nanoparticles in liquid down to 0.24 nm, in both transmission and scanning transmission modes, in a novel, monolithic liquid cell developed for the transmission electron microscope (TEM). At typical SiN membrane thicknesses of 50 nm the liquid-layer thickness has a maximum change of only 30 nm for the entire TEM viewing area of 200×200 µm.
Keywords
- Type
- Equipment and Techniques Development
- Information
- Copyright
- © Microscopy Society of America 2015
References
Abrams, I.M. & Mcbain, J.W. (1944). A closed cell for electron microscopy. J Appl Phys
15(8), 607–609.Google Scholar
Baker, R.T.K. & Harris, P.S. (1972). Controlled atmosphere electron microscopy. J Phys E Sci Instrum
5(8), 793.CrossRefGoogle Scholar
Bartholomew, C.H. & Farrauto, R.J. (2011).
Fundamentals of Industrial
Catalytic Processes
. Hoboken, NJ: Wiley.Google Scholar
Bell, A.T. (2003). The impact of nanoscience on heterogeneous catalysis. Science
299(5613), 1688–1691.Google Scholar
Burge, R.E. & Misell, D.L. (1968). Electron energy loss spectra for evaporated carbon films. Philos Mag
18(152), 251–259.Google Scholar
Cavé, L., Al, T., Loomer, D., Cogswell, S. & Weaver, L. (2006). A STEM/EELS method for mapping iron valence ratios in oxide minerals. Micron
37(4), 301–309.Google Scholar
Chen, Q., Smith, J.M., Park, J., Kim, K., Ho, D., Rasool, H.I., Zettl, A. & Alivisatos, A.P. (2013). 3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy. Nano Lett
13(9), 4556–4561.Google Scholar
Cosslett, V.E. (1969). Energy loss and chromatic aberration in electron microscopy. Z Angew Physik
27, 138–141.Google Scholar
Creemer, J.F., Helveg, S., Hoveling, G.H., Ullmann, S., Molenbroek, A.M., Sarro, P.M. & Zandbergen, H.W. (2008). Atomic-scale electron microscopy at ambient pressure. Ultramicroscopy
108(9), 993–998.Google Scholar
de Jonge, N., Peckys, D.B., Kremers, G.J. & Piston, D.W. (2009). Electron microscopy of whole cells in liquid with nanometer resolution. Proc Natl Acad Sci U S A
106, 2159–2164.Google Scholar
de Jonge, N., Poirier-Demers, N., Demers, H., Peckys, D.B. & Drouin, D. (2010). Nanometer-resolution electron microscopy through micrometers-thick water layers. Ultramicroscopy
110(9), 1114–1119.Google Scholar
de Jonge, N. & Ross, F.M. (2011). Electron microscopy of specimens in liquid. Nat Nanotechnol
6(11), 695–704.CrossRefGoogle ScholarPubMed
Dukes, M.J., Jacobs, B.W., Morgan, D.G., Hegde, H. & Kelly, D.F. (2013). Visualizing nanoparticle mobility in liquid at atomic resolution. Chem Commun
49(29), 3007–3009.Google Scholar
Egerton, R.F. (2011). Electron Energy-Loss Spectroscopy in the Electron Microscope. Berlin and New York: Springer.Google Scholar
Egerton, R.F., Wang, F., Malac, M., Moreno, M.S. & Hofer, F. (2008). Fourier-ratio deconvolution and its Bayesian equivalent. Micron
39(6), 642–647.Google Scholar
Gai, P. (2002). Developments in in situ environmental cell high-resolution electron microscopy and applications to catalysis. Top Catal
21(4), 161–173.CrossRefGoogle Scholar
Grogan, J.M. & Bau, H.H. (2010). The nanoaquarium: A platform for in situ transmission electron microscopy in liquid media. J Microelectromech Syst
19(4), 885–894.Google Scholar
Gu, M., Parent, L.R., Mehdi, B.L., Unocic, R.R., McDowell, M.T., Sacci, R.L., Xu, W., Connell, J.G., Xu, P., Abellan, P., Chen, X., Zhang, Y., Perea, D.E., Evans, J.E., Lauhon, L.J., Zhang, J.-G., Liu, J., Browning, N.D., Cui, Y., Arslan, I. & Wang, C.-M. (2013). Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett
13(12), 6106–6112.Google Scholar
Holtz, M.E., Yu, Y., Gao, J., Abruña, H.D. & Muller, D.A. (2013). In situ electron energy-loss spectroscopy in liquids. Microsc Microanal
19(4), 1027–1035.Google Scholar
Iakoubovskii, K., Mitsuishi, K., Nakayama, Y. & Furuya, K. (2008). Thickness measurements with electron energy loss spectroscopy. Microsc Res Tech
71(8), 626–631.Google Scholar
Jeangros, Q., Faes, A., Wagner, J.B., Hansen, T.W., Aschauer, U., Van herle, J., Hessler-Wyser, A. & Dunin-Borkowski, R.E. (2010). In situ redox cycle of a nickel–YSZ fuel cell anode in an environmental transmission electron microscope. Acta Mater
58(14), 4578–4589.Google Scholar
Jensen, E., Burrows, A. & Mølhave, K. (2014). Monolithic chip system with a microfluidic channel for in situ electron microscopy of liquids. Microsc Microanal
20(2), 445–451.Google Scholar
Jungjohann, K.L., Evans, J.E., Aguiar, J.A., Arslan, I. & Browning, N.D. (2012). Atomic-scale imaging and spectroscopy for in situ liquid scanning transmission electron microscopy. Microsc Microanal
18(3), 621–627.Google Scholar
Klein, K., Anderson, I. & de Jonge, N. (2011
a). Transmission electron microscopy with a liquid flow cell. J Microsc
242(2), 117–123.Google Scholar
Klein, K., de Jonge, N. & Anderson, I. (2011
b). Energy-loss characteristics for EFTEM imaging with a liquid flow cell. Microsc Microanal
17(Suppl 2), 780–781.Google Scholar
Li, D., Nielsen, M.H., Lee, J.R.I., Frandsen, C., Banfield, J.F. & De Yoreo, J.J. (2012). Direction-specific interactions control crystal growth by oriented attachment. Science
336(6084), 1014–1018.Google Scholar
Liao, H.-G., Zherebetskyy, D., Xin, H., Czarnik, C., Ercius, P., Elmlund, H., Pan, M., Wang, L.-W. & Zheng, H. (2014). Facet development during platinum nanocube growth. Science
345(6199), 916–919.Google Scholar
Liddle, J.A., Huggins, H.A., Mulgrew, P., Harriott, L.R., Wade, H.H. & Bolan, K. (1994). Fracture strength of thin ceramic membranes. MRS Online Proceedings Library
338.Google Scholar
Liu, K.-L., Wu, C.-C., Huang, Y.-J., Peng, H.-L., Chang, H.-Y., Chang, P., Hsu, L. & Yew, T.-R. (2008). Novel microchip for in situ TEM imaging of living organisms and bio-reactions in aqueous conditions. Lab Chip
8(11), 1915–1921.CrossRefGoogle ScholarPubMed
Maier-Schneider, D., Maibach, J. & Obermeier, E. (1995). A new analytical solution for the load-deflection of square membranes. J Microelectromech Syst
4(4), 238–241.CrossRefGoogle Scholar
Marton, L. (1935). La microscopie electronique des objets biologiques. Bull Acad Roy Belgique
21, 553–560.Google Scholar
Mele, L., Santagata, F., Pandraud, G., Morana, B., Tichelaar, F.D., Creemer, J.F. & Sarro, P.M. (2010). Wafer-level assembly and sealing of a MEMS nanoreactor for in situ microscopy. J Micromech Microeng
20(8), 085040.Google Scholar
Menon, N.K. & Krivanek, O.L. (2002). Synthesis of electron energy loss spectra for the quantification of detection limits. Microsc Microanal
8(3), 203–215.CrossRefGoogle ScholarPubMed
O’Keefe, M., Allard, L. & Blom, D. (2008). Young’s fringes are not evidence of HRTEM resolution. Microsc Microanal
14(Suppl 2), 834–835.Google Scholar
O’Keefe, M., Allard, L. & Blom, D. (2010). Defining HRTEM resolution: Image resolutions and microscope limits. Microsc Microanal
16(Suppl 2), 766–767.Google Scholar
Peña, F.d.l., Burdet, P., Sarahan, M., Nord, M., Ostasevicius, T., Taillon, J., Eljarrat, A., Mazzucco, S., Fauske, V.T., Donval, G., Zagonel, L.F., Walls, M. & Iyengar, I. (2015). Hyperspy 0.8.Google Scholar
Radisic, A., Ross, F.M. & Searson, P.C. (2006
a). In situ study of the growth kinetics of individual island electrodeposition of copper. J Phys Chem B
110(15), 7862–7868.CrossRefGoogle ScholarPubMed
Radisic, A., Vereecken, P.M., Hannon, J.B., Searson, P.C. & Ross, F.M. (2006
b). Quantifying electrochemical nucleation and growth of nanoscale clusters using real-time kinetic data. Nano Lett
6(2), 238–242.Google Scholar
Ramachandra, R., Demers, H. & de Jonge, N. (2013). The influence of the sample thickness on the lateral and axial resolution of aberration-corrected scanning transmission electron microscopy. Microsc Microanal
19(1), 93–101.Google Scholar
Reimer, L. (1997). Transmission Electron Microscopy: Physics of Image Formation and Microanalysis. New York: Springer-Verlag.Google Scholar
Riegler, K. & Kothleitner, G. (2010). EELS detection limits revisited: Ruby—a case study. Ultramicroscopy
110(8), 1004–1013.Google Scholar
Ross, F.M. (2010). Controlling nanowire structures through real time growth studies. Rep Prog Phys
73(11), 114501.Google Scholar
Sharma, R. (2001). Design and applications of environmental cell transmission electron microscope for in situ observations of gas–solid reactions. Microsc Microanal
7(6), 494–506.Google Scholar
Sharma, R., Crozier, P.A., Kang, Z.C. & Eyring, L. (2004). Observation of dynamic nanostructural and nanochemical changes in ceria-based catalysts during in-situ reduction. Philos Mag
84(25–26), 2731–2747.Google Scholar
Sharma, R., Rez, P., Brown, M., Du, G. & Treacy, M.M.J. (2007). Dynamic observations of the effect of pressure and temperature conditions on the selective synthesis of carbon nanotubes. Nanotechnology
18(12), 125602.Google Scholar
Smeets, P.J.M., Cho, K.R., Kempen, R.G.E., Sommerdijk, N.A.J.M. & De Yoreo, J.J. (2015). Calcium carbonate nucleation driven by ion binding in a biomimetic matrix revealed by in situ electron microscopy. Nat Mater
14(4), 394–399.Google Scholar
Swift, J.A. & Brown, A.C. (1970). An environmental cell for the examination of wet biological specimens at atmospheric pressure by transmission scanning electron microscopy. J Phys E Sci Instrum
3(11), 924.Google Scholar
Vendelbo, S.B., Elkjær, C.F., Falsig, H., Puspitasari, I., Dona, P., Mele, L., Morana, B., Nelissen, B.J., van Rijn, R., Creemer, J.F., Kooyman, P.J. & Helveg, S. (2014). Visualization of oscillatory behaviour of Pt nanoparticles catalysing CO oxidation. Nat Mater (advance online publication). Nat Mater
13(9), 884–890.Google Scholar
Wang, C.-M., Liao, H.-G. & Ross, F.M. (2015). Observation of materials processes in liquids by electron microscopy. MRS Bull
40(1), 46–52.Google Scholar
Wang, C., Qiao, Q., Shokuhfar, T. & Klie, R.F. (2014). High-resolution electron microscopy and spectroscopy of ferritin in biocompatible graphene liquid cells and graphene sandwiches. Adv Mater
26(21), 3410–3414.Google Scholar
Wang, F., Egerton, R. & Malac, M. (2009
a). Fourier-ratio deconvolution techniques for electron energy-loss spectroscopy (EELS). Ultramicroscopy
109(10), 1245–1249.Google Scholar
Wang, R., Crozier, P.A. & Sharma, R. (2009
b). Structural transformation in ceria nanoparticles during redox processes. J Phys Chem C
113(14), 5700–5704.Google Scholar
Welch, D.A., Faller, R., Evans, J.E. & Browning, N.D. (2013). Simulating realistic imaging conditions for in situ liquid microscopy. Ultramicroscopy
135, 36–42.CrossRefGoogle ScholarPubMed
Williamson, M.J., Tromp, R.M., Vereecken, P.M., Hull, R. & Ross, F.M. (2003). Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat Mater
2(8), 532–536.Google Scholar
Yuk, J.M., Park, J., Ercius, P., Kim, K., Hellebusch, D.J., Crommie, M.F., Lee, J.Y., Zettl, A. & Alivisatos, A.P. (2012). High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science
336(6077), 61–64.Google Scholar
Zheng, H., Smith, R.K., Jun, Y.-w., Kisielowski, C., Dahmen, U. & Alivisatos, A.P. (2009). Observation of single colloidal platinum nanocrystal growth trajectories. Science
324(5932), 1309–1312.Google Scholar
- 28
- Cited by