Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T12:13:27.519Z Has data issue: false hasContentIssue false

Histomorphology of the Malpighian Tubules and the Chemical Composition of the Spherocrystals in the Tubule Epithelial Cells of Adult Leptophyes albovittata (Kollar, 1833) (Orthoptera, Tettigoniidae)

Published online by Cambridge University Press:  04 August 2021

Damla Amutkan Mutlu
Affiliation:
Faculty of Science, Department of Biology, Gazi University, Ankara06500, Turkey
Irmak Polat*
Affiliation:
Faculty of Science, Department of Biology, Çankırı Karatekin University, Çankırı18100, Turkey
Zekiye Suludere
Affiliation:
Faculty of Science, Department of Biology, Gazi University, Ankara06500, Turkey
*
*Corresponding author: Irmak Polat, E-mail: irmakyilmaz@gazi.edu.tr
Get access

Abstract

In insects, the number, cytological and histological structures, and the spherocrystals of the Malpighian tubules (MTs) can vary considerably in different insect groups. These differences are considered important because they can be used as taxonomic characters. For this purpose, the ultrastructure of the MT epithelial cells in Leptophyes albovittata (Kollar, 1833) (Orthoptera, Tettigoniidae) was examined by light microscopy, scanning electron microscopy, and transmission electron microscopy. The wall of each tubule consists of a single layer of cells. These cells have round-shaped nuclei. Two different cell types were demonstrated in the tubule cell. These are cells that have electron-dense cytoplasm and electron-lucent cytoplasm. It was observed that the cytoplasm of these cells has many spherocrystals. The chemical composition of the spherocrystals was found to be high in carbon, phosphorus, and manganese in tubule cells.

Type
Biological Applications
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amutkan Mutlu, D & Suludere, Z (2020). The spherocrystals in the tubule epithelial cells and ultrastructure of the Malpighian tubules of adult Isophya nervosa (Orthoptera, Tettigoniidae). Gazi Univ J Sci 33(3), 630644.Google Scholar
Arab, A & Caetano, FH (2002). Segmental specializations in the Malpighian tubules of the fire ant Solenopsis saevissima Forel 1904 (Myrmicinae): An electron microscopical study. Arthropod Struct Dev 30, 281292.CrossRefGoogle Scholar
Ballan-Dufrançais, C (2002). Localization of metals in cells of pterygote insects. Microsc Res Tech 56(6), 403420.CrossRefGoogle ScholarPubMed
Berridge, MJ & Oschman, JL (1969). A structural basis for fluid secretion by Malpighian tubules. Tissue Cell 1(2), 247272.CrossRefGoogle ScholarPubMed
Biagio, FP, Tamaki, FK, Terra, WR & Ribeiro, AF (2009). Digestive morphophysiology of Gryllodes sigillatus (Orthoptera: Gryllidae). J Insect Physiol 55(12), 11251133.CrossRefGoogle Scholar
Bolz, R (1998). Anmerkungenzum Fraß-und Eiablageverhalten der Gestreiften Zartschrecke Leptophyes albovittata (Kollar, 1833). Articulata 13(1), 101103.Google Scholar
Bradley, TJ, Stuart, AM & Satir, P (1982). The ultrastructure of the larval Malpighian tubules of a saline-water mosquito. Tissue Cell 14(4), 759773.CrossRefGoogle ScholarPubMed
Browne, A & O'Donnell, MJ (2018). Calcium transport across the basolateral membrane of isolated Malpighian tubules: A survey of several insect orders. Physiol Entomol 43(3), 227238.CrossRefGoogle Scholar
Delakorda, SL, Letofsky-Papst, I, Novak, T, Hofer, F & Pabst, MA (2009). Structure of the Malpighian tubule cells and annual changes in the structure and chemical composition of their spherites in the cave cricket Troglophilus neglectus Krauss, 1878 (Rhaphidophoridae, Saltatoria). Arthropod Struct Dev 38(4), 315327.CrossRefGoogle Scholar
Duttaroy, A, Parkes, T, Emtage, P, Kirby, K, Boulianne, GL, Wang, X, Hilliker, AJ & Phillips, JP (1997). The manganese superoxide dismutase gene of Drosophila: Structure, expression, and evidence for regulation by MAP kinase. DNA Cell Biol 16(4), 391399.CrossRefGoogle ScholarPubMed
Fontanetti, CS, Tiritan, B & Camargo-Mathias, MI (2006). Mineralized bodies in the fat body of Rhinocricus padbergi (Diplopoda). J Morphol Sci 23(3-4), 487493.Google Scholar
Gautam, NM & Tapadia, MG (2014). Overview of Malpighian tubules development and function in Drosophila melanogaster. J Sci Res 58, 8798.Google Scholar
Gonçalves, WG, Fialho, MDCQ, Azavedo, DO, Zanuncio, JC & Serrao, JE (2014). Ultrastructure of the excretory organs of Bombus morio (Hymenoptera: Bombini): Bee without rectal pads. Microsc Microanal 20(1), 285295.CrossRefGoogle ScholarPubMed
Gullan, PJ & Cranston, PS (2012). Böcekler: Entomolojinin Ana Hatları. Ankara, Turkey: Nobel Yayınevi.Google Scholar
Jarial, MS (1990). Fine structure of Malpighian tubules Grylloblatta compodeiformis (Orthoptera: Grylloblattidae). Trans Am Microsc Soc 109(4), 329341.CrossRefGoogle Scholar
Krueger, RA, Broce, AB & Hopkins, TL (1987). Dissolution of granules in the Malpighian tubules of Musca autumnalis Degeer, during mineralization of the puparium. J Insect Physiol 33(4), 255263.CrossRefGoogle Scholar
Krueger, RA, Broce, AB, Hopkins, TL & Kramer, KJ (1988). Calcium transport from Malpighian tubules to puparial cuticle of Musca autumnalis. J Comp Physiol B 158(4), 413419.CrossRefGoogle Scholar
Lipovšek, S, Letofsky-Papst, I, Hofer, F, Pabst, MA & Devetak, D (2012). Application of analytical electron microscopic methods to investigate the function of spherites in the midgut of the larval antlion Euroleon nostras (Neuroptera: Myrmeleontidae). Microsc Res Tech 75(4), 397407.CrossRefGoogle Scholar
Liu, L & Hua, BZ (2018). Ultrastructure of the larval Malpighian tubules in Terrobittacus implicatus (Mecoptera: Bittacidae). Protoplasma 255(4), 11211128.CrossRefGoogle Scholar
Maddrell, SHP (1969). Secretion by the Malpighian tubules of Rhodnius. The movements of ions and water. J Exp Biol 51, 7197.CrossRefGoogle Scholar
Maddrell, SHP (1981). The functional design of the insect excretory system. J Exp Biol 90, 115.CrossRefGoogle Scholar
Maddrell, SHP & Gardiner, BOC (1974). The passive permeability of insect Malpighian tubules to organic solutes. J Exp Biol 60, 641652.CrossRefGoogle ScholarPubMed
Martini, SV, Nascimento, SB & Morales, MM (2007). Rhodnius prolixus Malpighian tubules and control of dieresis by neurohormones. An Acad Bras Ciênc 79, 8795.CrossRefGoogle Scholar
Nocelli, RCF, Cintra-Socolowski, P, Roat, TC, Silva-Zacarin, E & Malaspina, O (2016). Comparative physiology of Malpighian tubules: Form and function. Insect Physiol 6, 1323.Google Scholar
Pacheco, CA, Alevi, KCC, Ravazi, A & Oliveira, MTVDA (2014). Malpighian tubule, an essential organ for insects. Entomol Ornithol Herpetol 3, 13.Google Scholar
Pal, R & Kumar, K (2012). Ultrastructural features of the larval Malpighian tubules of the flesh fly Sarcophaga ruficornis (Diptera: Sarcophagidae). Int J Trop Insect Sci 32(3), 166172.CrossRefGoogle Scholar
Pal, R & Kumar, K (2013). Malpighian tubules of adult flesh fly, Sarcophaga ruficornis Fab. (Diptera: Sarcophagidae): An ultrastructural study. Tissue Cell 45, 312317.CrossRefGoogle Scholar
Pigino, G, Migliorini, M, Paccagnini, E, Bernini, F & Leonzio, C (2005). Fine structure of the midgut and Malpighian papillae in Campodea (Monocampa) quilisi Silvestri, 1932 (Hexapoda, Diplura) with special reference to the metal composition and physiological significance of midgut intracellular electron-dense granules. Tissue Cell 37, 223232.CrossRefGoogle ScholarPubMed
Rabitsch, WB (1997). Tissue-specific accumulation patterns of Pb, Cd, Cu, Zn, Fe, and Mn in workers of three ant species (Formicidae, Hymenoptera) from a metal-polluted site. Arch Environ Contam Toxicol 32(2), 172177.CrossRefGoogle Scholar
Samson, ML (2000). Drosophila arginase is produced from a nonvital gene that contains the elav locus within its third intron. J Biol Chem 275(40), 3110731114.CrossRefGoogle ScholarPubMed
Sevgili, H (2004). Review of the genus Leptophyes of Turkey with the description of a new species (Orthoptera, Phaneropterinae). Trans Am Entomol Soc 130(1), 95112.Google Scholar
Sterner, RW & Elser, JJ (2002). Ecological Stoichiometry: The Biology of Elements From Molecules to the Biosphere. Princeton, New Jersey: Princeton University Press.Google Scholar
Tejeda-Guzmán, C, Rosas-Arellano, A, Kroll, T, Webb, SM, Barajas-Aceves, M, Osorio, B & Missirlis, F (2017). Zinc storage granules in the Malpighian tubules of Drosophila melanogaster. Bio Rxiv 221(6), 159558.Google Scholar
Ünal, M (2005). Phaneropterinae (Orthoptera: Tettigoniidae) from Turkey and the Middle East. Trans Am Entomol Soc 131(3–4), 425448.Google Scholar
Ünal, M (2010). Phaneropterinae (Orthoptera: Tettigoniidae) from Turkey and the Middle East II. Trans Am Entomol Soc 136(1–2), 125183.CrossRefGoogle Scholar
Visanuvimol, L & Bertram, SM (2011). How dietary phosphorus availability during development influences condition and life history traits of the cricket, Acheta domesticus. J Insect Sci 11(63), 117.CrossRefGoogle Scholar
Woods, HA, Perkins, MC, Elser, JJ & Harrison, JF (2002). Absorption and storage of phosphorus by larval Manduca sexta. J Insect Physiol 48(5), 555564.CrossRefGoogle ScholarPubMed
Zhong, H, Zhang, Y & Wei, C (2015). Morphology and ultrastructure of the Malpighian tubules in Kolla paulula (Hemiptera: Cicadellidae). Zool Anz-A J Comp Zool 257, 2228.CrossRefGoogle Scholar
Zöller, S & Detzel, P (1996). Zur Verbreitung von Leptophyes albovittata (Kollar, 1833) Erstnachweis in Baden-Württemberg. Articulata 11(1), 109115.Google Scholar