Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T11:03:26.549Z Has data issue: false hasContentIssue false

Imaging of Dental Hard Tissue Surfaces Prepared by an Ultrashort Pulsed Laser System (USPL)

Published online by Cambridge University Press:  12 December 2016

Matthias Schäper
Affiliation:
Department of Operative and Preventive Dentistry, Dental Faculty, Bonn University, 53111 Bonn, Germany
Susanne Reimann
Affiliation:
Oral Technology, Dental Faculty, Bonn University, 53111 Bonn, Germany
Matthias Frentzen
Affiliation:
Department of Operative and Preventive Dentistry, Dental Faculty, Bonn University, 53111 Bonn, Germany
Jörg Meister*
Affiliation:
Department of Operative and Preventive Dentistry, Dental Faculty, Bonn University, 53111 Bonn, Germany Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
*
*Corresponding author. jmeister@uni-bonn.de
Get access

Abstract

The aim of this study was to compare surface structures of laser-irradiated dental hard tissues using confocal (CFM), atomic force (AFM), and scanning electron microscopy (SEM). The general potential of the AFM in analyzing laser-irradiated surfaces was determined in this context. Specimens of human enamel and dentin were irradiated using an 8.6 W Nd:YVO4 laser with a pulse duration of 8 ps, λCenter=1,064 nm, and a pulse repetition rate of 500 kHz. Surface topology of irradiated areas (1 mm2) was investigated using AFM, CFM, and SEM. Surface roughness Rz was measured only with the AFM and the CFM. For non-irradiated enamel and dentin surfaces, roughnesses for CFM and AFM are in the nanometer range. However, major differences in roughness were determined for laser-prepared surfaces. For enamel, Rz(CFM)=2.33 μm is much higher compared with Rz(AFM)=0.09 μm; in the case of dentin, Rz(CFM)=5.35 μm is also much higher compared with Rz(AFM)=0.093 μm. Information regarding structural properties of surfaces needs real dimensions, particularly for use in dentistry. In this respect, AFM technology provides no additional results that lead to a significant improvement.

Type
Biological Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Apel, C., Meister, J., Götz, H., Duschner, H. & Gutknecht, N. (2005). Structural changes in human dental enamel after subablative erbium laser irradiation and its potential use for caries prevention. Caries Res 39(1), 6570.Google Scholar
Bello-Silva, M.S., Wehner, M., Eduardo, C.P., Lampert, F., Poprawe, R., Hermans, M. & Esteves-Oliveira, M. (2012). Precise ablation of dental hard tissues with ultra-short pulsed lasers. Preliminary exploratory investigation on adequate laser parameters. Lasers Med Sci 28(1), 171184.CrossRefGoogle ScholarPubMed
Blankenau, R.J., Powell, G.L., Ellis, R.W. & Westerman, G.H. (1999). In vivo caries-like lesion prevention with argon laser: Pilot study. J Clin Laser Med Surg 17(6), 241243.CrossRefGoogle ScholarPubMed
Bowen, W.H. (2016). Dental caries—not just holes in teeth! A perspective. Mol Oral Microbiol 31(3), 228233.CrossRefGoogle ScholarPubMed
Convissar, R.A. (2015). Principles and Practice of Laser Dentistry, 2nd ed St. Louis, MO: Elsevier Mosby.Google Scholar
Cross, S.E., Kreth, J., Zhu, L., Qi, F., Pelling, A.E., Shi, W. & Gimzewski, J.K. (2006). Atomic force microscopy study of the structure-function relationships of the biofilm-forming bacterium Streptococcus mutans . Nanotechnology 17(4), S1S7.CrossRefGoogle ScholarPubMed
Curylofo-Zotti, F.A., Lepri, T.P., Colucci, V., Turssi, C.P., & Corona, S.A. (2015). Sub ablative Er: YAG laser irradiation on surface roughness of eroded dental enamel. Microsc Res Tech 78(11), 989993.CrossRefGoogle ScholarPubMed
de Almeida Neves, A., Coutinho, E., Cardoso, M.V., Lambrechts, P. & Van Meerbeek, B. (2011). Current concepts and techniques for caries excavation and adhesion to residual dentin. J Adhes Dent 13(1), 722.Google ScholarPubMed
De Moor, R.J. & Delme, K. (2010). Laser-assisted cavity preparation and adhesion to erbium-lased tooth structure: Part 2. Present-day adhesion to erbium-lased tooth structure in permanent teeth. J Adhes Dent 12(2), 91102.Google Scholar
De Munck, J., Van Meerbeek, B., Yudhira, R., Lambrechts, P. & Vanherle, G. (2002). Micro-tensile bond strength of two adhesives to erbium:YAG-lased vs. bur-cut enamel and dentin. Eur J Oral Sci 110(4), 322329.CrossRefGoogle ScholarPubMed
Dunn, W.J., Davis, J.T. & Bush, A.C. (2005). Shear bond strength and SEM evaluation of composite bonded to Er:YAG laser-prepared dentin and enamel. Dent Mater 21(7), 616624.CrossRefGoogle ScholarPubMed
Engelbach, C., Dehn, C., Bourauel, C., Meister, J. & Frentzen, M. (2015). Ablation of carious dental tissue using an ultrashort pulsed laser (USPL) system. Lasers Med Sci 30(5), 14271434.Google Scholar
Field, J., Waterhouse, P. & German, M. (2010). Quantifying and qualifying surface changes on dental hard tissues in vitro. J Dent 38(3), 182190.Google Scholar
Gavara, N. (2016). A beginner’s guide to atomic force microscopy probing for cell mechanics. Microsc Res Tech [Epub ahead of print]. https://doi.org/10.1002/jemt.22776.Google Scholar
Geraldo-Martins, V.R., Lepri, C.P., Faraoni-Romano, J.J. & Palma-Dibb, R.G. (2014). The combined use of Er,Cr:YSGG laser and fluoride to prevent root dentin demineralization. J Appl Oral Sci 22(5), 459464.Google Scholar
Gutknecht, N. (2007). Proceedings of the 1st International Workshop of Evidence Based Dentistry on Lasers in Dentistry. London, Berlin and Chicago, IL: Quintessence Publishing Co. Ltd.Google Scholar
Jandt, K.D. (2001). Atomic force microscopy of biomaterials surfaces and interfaces. Surf Sci 491(3), 303332.Google Scholar
Miranda, P.V., Rodrigues, J.A., Blay, A., Shibli, J.A. & Cassoni, A. (2015). Surface alterations of zirconia and titanium substrates after Er,Cr:YSGG irradiation. Lasers Med Sci 30(1), 4348.Google Scholar
Moldes, V.L., Capp, C.I., Navarro, R.S., Matos, A.B., Youssef, M.N. & Cassoni, A. (2009). In vitro microleakage of composite restorations prepared by Er:YAG/Er,Cr:YSGG lasers and conventional drills associated with two adhesive systems. J Adhes Dent 11(3), 221229.Google Scholar
Morris, V.J., Kirgy, A.R. & Gunning, A.P. (1999). Atomic Force Microscopy for Biologists. London: Imperial College Press.CrossRefGoogle Scholar
Pelling, A.E., Li, Y., Shi, W. & Gimzewski, J.K. (2005). Nanoscale visualization and characterization of Myxococcus xanthus cells with atomic force microscopy. Proc Natl Acad Sci U S A 102(18), 64846489.Google Scholar
Petrou, I., Heu, R., Stranick, M., Lavender, S., Zaidel, L., Cummins, D., Sullivan, R.J., Hsueh, C. & Gimzewski, J.K. (2009). A breakthrough therapy for dentin hyper-sensitivity: How dental products containing 8% arginine and calcium carbonate work to deliver effective relief of sensitive teeth. J Clin Dent 20(1), 2331.Google Scholar
Rief, M., Gautel, M., Oesterhelt, F., Fernandez, J.M. & Gaub, H.E. (1997). Reversible unfolding of individual titin immunoglobulin domains by AFM. Science 276(5315), 11091112.Google Scholar
Rodríguez-Vilchis, L.E., Contreras-Bulnes, R., Olea-Mejìa, O.F., Sánchez-Flores, I., & Centeno-Pedraza, C. (2011). Morphological and structural changes on human dental enamel after Er:YAG laser irradiation: AFM, SEM, and EDS evaluation. Photomed Laser Surg 29(7), 493500.Google Scholar
Roulet, J.F. & Roulet-Mehrens, T.K. (1982). The surface roughness of restorative materials and dental tissues after polishing with prophylaxis and polishing pastes. J Periodontol 53(4), 257266.Google Scholar
Santos, D.M. Jr., Nogueira, R.D., Lepri, C.P., Gonçalves, L.S., Palma-Dibb, R.G. & Geraldo-Martins, V.R. (2014). In vitro assessment of the acid resistance of demineralized enamel irradiated with Er,Cr:YSGG and Nd:YAG lasers. Pediatr Dent 36(7), 137142.Google Scholar
Sasaki, L.H., Lobo, P.D., Moriyama, Y., Watanabe, I.S., Villaverde, A.B., Tanaka, C.S., Moriyama, E.H. & Brugnera, A. Jr. (2008). Tensile bond strength and SEM analysis of enamel etched with Er:YAG laser and phosphoric acid: A comparative study in vitro. Braz Dent J 19(1), 5761.Google Scholar
Schelle, F., Polz, S., Haloui, H., Braun, A., Dehn, C., Frentzen, M. & Meister, J. (2013). Ultrashort pulsed laser (USPL) application in dentistry: Basic investigations of ablation rates and thresholds on oral hard tissue and restorative materials. Lasers Med Sci 29(6), 17751783.Google Scholar
Sharma, S., Cross, S.E., Hsueh, C., Wali, R.P., Stieg, A.Z. & Gimzewski, J.K. (2010). Nanocharacterization in dentistry. Int J Mol Sci 11(6), 25232545.CrossRefGoogle ScholarPubMed
Stylianou, A. & Yova, D. (2015). Atomic force microscopy investigation of the interaction of low-level laser irradiation of collagen thin films in correlation with fibroblast response. Lasers Med Sci 30(9), 23692379.CrossRefGoogle ScholarPubMed
Tukey, J.W. (1977). Exploratory Data Analysis (Addison-Wesley Series in Behavioral Science. Reading, MA: Addison Wesley Publishing Company Inc.Google Scholar
Wanderley, R.L., Monghini, E.M., Pecora, J.D., Palma-Dibb, R.G. & Borsatto, M.C. (2005). Shear bond strength to enamel of primary teeth irradiated with varying Er:YAG laser energies and SEM examination of the surface morphology: An in vitro study. Photomed Laser Surg 23(3), 260267.Google Scholar
Wang, L., Tang, R., Bonstein, T., Orme, C.A., Bush, P.J. & Nancollas, G.H. (2005). A new model for nanoscale enamel dissolution. J Phys Chem B 109(2), 9991005.Google Scholar
Watari, F. (2001). Compositional and morphological imaging of CO2 laser irradiated human teeth by low vacuum SEM, confocal laser scanning microscopy and atomic force microscopy. J Mater Sci Mater Med 12(3), 189194.Google Scholar
Watson, T.F. (1997). Fact and artefact in confocal microscopy. Adv Dent Res 11(4), 433441.Google Scholar
Yurdaguven, H., Aykor, A., Ozel, E., Sabuncu, H. & Soyman, M. (2012). Influence of a prophylaxis paste on surface roughness of different composites, porcelain, enamel and dentin surfaces. Eur J Dent 6(1), 18.Google Scholar