Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T21:31:48.391Z Has data issue: false hasContentIssue false

In Situ Atom Probe Deintercalation of Lithium-Manganese-Oxide

Published online by Cambridge University Press:  30 January 2017

Björn Pfeiffer*
Affiliation:
Institute of Materials Physics, Georg-August-University Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
Johannes Maier
Affiliation:
Institute of Materials Physics, Georg-August-University Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
Jonas Arlt
Affiliation:
Institute of Materials Physics, Georg-August-University Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
Carsten Nowak
Affiliation:
Institute of Materials Physics, Georg-August-University Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
*
*Corresponding author.bpfeiffer@ump.gwdg.de
Get access

Abstract

Atom probe tomography is routinely used for the characterization of materials microstructures, usually assuming that the microstructure is unaltered by the analysis. When analyzing ionic conductors, however, gradients in the chemical potential and the electric field penetrating dielectric atom probe specimens can cause significant ionic mobility. Although ionic mobility is undesirable when aiming for materials characterization, it offers a strategy to manipulate materials directly in situ in the atom probe. Here, we present experimental results on the analysis of the ionic conductor lithium-manganese-oxide with different atom probe techniques. We demonstrate that, at a temperature of 30 K, characterization of the materials microstructure is possible without measurable Li mobility. Also, we show that at 298 K the material can be deintercalated, in situ in the atom probe, without changing the manganese-oxide host structure. Combining in situ atom probe deintercalation and subsequent conventional characterization, we demonstrate a new methodological approach to study ionic conductors even in early stages of deintercalation.

Type
New Approaches and Correlative Microscopy
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bach, S., Farcy, J. & Pereira-Ramos, J.P. (1998). An electrochemical investigation of Li intercalation in the sol-gel LiMn2O4 spinel oxide. Solid State Ion 110, 193198.Google Scholar
Bas, P., Bostel, A., Deconihout, B. & Blavette, D. (1995). A general protocol for the reconstruction of 3D atom probe data. Appl Surf Sci 87/88, 298304.CrossRefGoogle Scholar
Devaraj, A., Colby, R., Hess, W.P., Perea, D.E. & Thevuthasan, S. (2013). Role of photoexcitation and field ionization in the measurement of accurate oxide stoichiometry by laser-assisted atom probe tomography. J Phys Chem Lett 4, 993998.CrossRefGoogle ScholarPubMed
Devaraj, A., Gu, M., Colby, R., Yan, P., Wang, C.M., Zheng, J.M., Xiao, J., Genc, A., Zhang, J. G., Belharouak, I., Wang, D., Amine, K. & Thevuthasan, S. (2015). Visualizing nanoscale 3D compositional fluctuation of lithium in advanced lithium-ion battery cathodes. Nat Commun 6, 8014.CrossRefGoogle ScholarPubMed
Escher, C., Latychevskaia, T., Fink, H.-W. & Pohl, D.W. (2006). Direct evidence for conduction pathways in a solid electrolyte. Phys Rev. Lett 97, 136601.CrossRefGoogle Scholar
Greiwe, G.-H., Balogh, Z. & Schmitz, G. (2014). Atom probe tomography of lithium-doped network glasses. Ultramicroscopy 141, 5155.CrossRefGoogle ScholarPubMed
Huang, R., Ikuhara, Y.H., Mizoguchi, T., Findlay, S.D., Kuwabara, A., Fisher, C.A.J., Moriwake, H., Oki, H., Hirayama, T. & Ikuhara, Y. (2011). Oxygen-vacancy ordering at surfaces of lithium manganese(III,IV) oxide spinel nanoparticles. Angew Chem Int Ed 50, 30533057.Google Scholar
Kanamura, K., Naito, H., Yao, T. & Takehara, Z.-I. (1996). Structural change of the LiMn2O4 spinel structure induced by extraction of lithium. J Mater Chem 6, 3336.Google Scholar
Karahka, M., Xia, Y. & Kreuzer, H.J. (2015). The mystery of missing species in atom probe tomography of composite materials. Appl Phys Lett 107, 062105.Google Scholar
Kelly, T.F., Vella, A., Bunton, J.H., Houard, J, Silaeva, E.P., Bogdanowicz, J. & Vandervorst, W. (2014). Laser pulsing of field evaporation in atom probe tomography. Curr Opin Solid State Mater Sci 18, 8189.Google Scholar
Kesten, P., Pundt, A., Schmitz, G., Weisheit, M., Krebs, H.U. & Kirchheim, R. (2002). H- and D distribution in metallic multilayers studied by 3-dimensional atom probe analysis and secondary ion mass spectrometry. J Alloy Compd 330–332, 225228.Google Scholar
Kucza, W. (1999). Ionic description of intercalation in LixMn2O4 system. Solid State Ion 124, 125131.Google Scholar
Larson, D.J., Foord, D.T., Petford-Long, A.K., Liew, H., Blamire, M.G., Cerezo, A. & Smith, G. D.W. (1999). Field-ion specimen preparation using focused ion-beam milling. Ultramicroscopy 79, 287293.CrossRefGoogle Scholar
Lee, S., Oshima, Y., Hosono, E., Zhou, H., Kim, K., Chang, H.M., Kanno, R. & Takayanagi, K. (2013). In situ TEM observation of local phase transformation in a rechargeable LiMn2O4 nanowire battery. J Phys Chem C 117, 2423624241.CrossRefGoogle Scholar
Lee, S., Oshima, Y., Hosono, E., Zhou, H., Kim, K., Chang, H.M., Kanno, R. & Takayanagi, K. (2015). Phase transitions in a LiMn2O4 nanowire battery observed by operando electron microscopy. ACS Nano 9, 626632.CrossRefGoogle Scholar
Li, G., Yamada, A., Fukushima, Y., Yamaura, K., Saito, T., Endo, T., Azuma, H., Sekai, K. & Nishi, Y. (2000). Phase segregation of LixMn2O4 (0.6<x<1) in non-equilibrium reduction processes. Solid State Ion 130, 221228.Google Scholar
Maier, J., Pfeiffer, B., Volkert, C.A. & Nowak, C. (2016). Three-dimensional microstructural characterization of lithium manganese oxide with atom probe tomography. Energy Technol, 4, 15651574.CrossRefGoogle Scholar
Miller, M.K., Cerezo, A., Hetherington, M.G. & Smith, G.D.W. (1996). Atom Probe Field Ion Microscopy. Oxford: Oxford University Press.Google Scholar
Miller, M.K., Russell, K.F., Thompson, K., Alvis, R. & Larson, D.J. (2007). Review of atom probe FIB-based specimen preparation methods. Microsc Microanal 13, 428436.Google Scholar
Ohzuku, T., Kitagawa, M. & Hirai, T. (1990). Electrochemistry of manganese dioxide in lithium nonaqueous cell: III. X-ray diffractional study on the reduction of spinel-related manganese dioxide. J Electrochem Soc 137, 769775.Google Scholar
Ouyang, C., Shi, S., Wang, Z., Huang, X. & Chen, L. (2004). Experimental and theoretical studies on dynamic properties of Li ions in LixMn2O4 . Solid State Commun 130, 501506.Google Scholar
Rodrìguez-Carvajal, J., Rousse, G., Masquelier, C. & Hervieu, M. (1998). Electronic crystallization in a lithium battery material: Columnar ordering of electrons and holes in the spinel LiMn2O4 . Phys Rev Lett 81, 46604663.Google Scholar
Santhanagopalan, D., Schreiber, D.K., Perea, D.E., Martens, R.L., Janssen, Y., Khalifah, P. & Meng, Y.S. (2015). Effects of laser energy and wavelength on the analysis of LiFePO4 using laser assisted atom probe tomography. Ultramicroscopy 148, 5766.Google Scholar
Schmitz, G, Abouzari, R, Berkemeier, F., Gallasch, T., Greiwe, G., Stockhoff, T. & Wunde, F. (2010). Nanoanalysis and ion conductivity of thin film battery materials. Z Phys Chem 224, 17951829.Google Scholar
Shimakawa, Y., Numata, T. & Tabuchi, J. (1997). Verwey-type transition and magnetic properties of the LiMn2O4 spinels. J Solid State Chem 131, 138143.Google Scholar
Silaeva, E.P., Arnoldi, L., Karahka, M.L., Deconihout, B., Menand, A., Kreuzer, H.J. & Vella, A. (2014). Do dielectric nanostructures turn metallic in high-electric DC fields? Nano Lett 14, 60666072.Google Scholar
Silaeva, E.P., Karahka, M. & Kreuzer, H.J. (2013). Atom probe tomography and field evaporation of insulators and semiconductors: Theoretical issues. Curr Opin Solid State Mater Sci 17, 211216.Google Scholar
Van Eekelen, H.A.M. (1970). The behaviour of the field-ion microscope: A gas dynamical calculation. Surf Sci 21, 2144.Google Scholar
Vella, A, Mazumder, B, Da Costa, G & Deconihout, B. (2011). Field evaporation mechanism of bulk oxides under ultra fast laser illumination. J Appl Phys 110, 044321.Google Scholar
Yang, W., Zhang, G., Lu, S., Xie, J. & Liu, Q. (1999). Electrochemical studies of Li/LixMn2O4 by using powder microelectrode. Solid State Ion 121, 8589.Google Scholar
Zhang, K., Han, X., Hu, Z., Zhang, X., Tao, Z. & Chen, J. (2015). Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem Soc Rev 44, 605834.Google Scholar

Pfeiffer supplementary material

Pfeiffer supplementary material 1

Download Pfeiffer supplementary material(Video)
Video 9 MB