Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2025-01-03T22:50:00.082Z Has data issue: false hasContentIssue false

The in Situ structure of a Parkinson's Disease Mutant LRRK2 Bound to Cellular Microtubules Revealed by Cryo-electron Tomography

Published online by Cambridge University Press:  30 July 2020

Reika Watanabe
Affiliation:
La Jolla Institute for Immunology, La Jolla, California, United States
Robert Buschauer
Affiliation:
Gene Center of LMU Munich, Munich, Baden-Wurttemberg, Germany
Jan Böhning
Affiliation:
University of Oxford, Oxford, England, United Kingdom
Martina Audagnotto
Affiliation:
UCSD, La Jolla, California, United States
Keren Lasker
Affiliation:
Stanford University, Stanford, California, United States
Tsan Wen Lu
Affiliation:
UCSD, La Jolla, California, United States
Daniela Boassa
Affiliation:
UCSD, La Jolla, California, United States
Susan Taylor
Affiliation:
UCSD, La Jolla, California, United States
Elizabeth Villa
Affiliation:
UCSD, La Jolla, California, United States

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
3D Structures: From Macromolecular Assemblies to Whole Cells (3DEM FIG)
Copyright
Copyright © Microscopy Society of America 2020

References

Ramirez, Blanca, Lara Ordonez, M., Fdez, A.J., Madero-Perez, E., Gonnelli, J., Drouyer, A., Chartier-Harlin, M., Taymans, M.C., Bubacco, J.M., Greggio, L., et al, E.. (2017). GTP binding regulates cellular localization of Parkinson's disease-associated LRRK2. Hum Mol Genet 26, 2747-2767.10.1093/hmg/ddx161CrossRefGoogle Scholar
Deng, X., Dzamko, N., Prescott, A., Davies, P., Liu, Q., Yang, Q., Lee, J.D., Patricelli, M.P., Nomanbhoy, T.K., Alessi, D.R., et al. . (2011). Characterization of a selective inhibitor of the Parkinson's disease kinase LRRK2. Nat Chem Biol 7, 203-205.10.1038/nchembio.538CrossRefGoogle ScholarPubMed
Di Maio, R., Hoffman, E.K., Rocha, E.M., Keeney, M.T., Sanders, L.H., De Miranda, B.R., Zharikov, A., Van Laar, A., Stepan, A.F., Lanz, T.A., et al. (2018). LRRK2 activation in idiopathic Parkinson's disease. Sci Transl Med 10.10.1126/scitranslmed.aar5429CrossRefGoogle ScholarPubMed
Kett, L.R., Boassa, D., Ho, C.C., Rideout, H.J., Hu, J., Terada, M., Ellisman, M., and Dauer, W.T. (2012). LRRK2 Parkinson disease mutations enhance its microtubule association. Hum Mol Genet 21, 890-899.10.1093/hmg/ddr526CrossRefGoogle ScholarPubMed
Roosen, D.A., and Cookson, M.R. (2016). LRRK2 at the interface of autophagosomes, endosomes and lysosomes. Mol Neurodegener 11, 73.10.1186/s13024-016-0140-1CrossRefGoogle ScholarPubMed
Schmidt, S.H., Knape, M.J., Boassa, D., Mumdey, N., Kornev, A.P., Ellisman, M.H., Taylor, S.S., and Herberg, F.W. (2019). The dynamic switch mechanism that leads to activation of LRRK2 is embedded in the DFGpsi motif in the kinase domain. Proc Natl Acad Sci U S A 116, 14979-14988.10.1073/pnas.1900289116CrossRefGoogle ScholarPubMed
Steger, M., Tonelli, F., Ito, G., Davies, P., Trost, M., Vetter, M., Wachter, S., Lorentzen, E., Duddy, G., Wilson, S., et al. (2016). Phosphoproteomics reveals that Parkinson's disease kinase LRRK2 regulates a subset of Rab GTPases. Elife 5.Google Scholar