Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-28T05:41:10.541Z Has data issue: false hasContentIssue false

In Situ Thickness Assessment During Ion Milling of a Free-Standing Membrane Using Transmission Helium Ion Microscopy

Published online by Cambridge University Press:  29 April 2013

Adam R. Hall*
Affiliation:
Joint School of Nanoscience and Nanoengineering, Department of Nanoscience, University of North Carolina Greensboro, Greensboro, NC 27401, USA
*
*Corresponding author. E-mail: adam.hall@uncg.edu
Get access

Abstract

We describe a novel method for in situ measurement of the local thickness of a freely suspended solid-state membrane after thinning with a focused helium ion beam. The technique utilizes a custom stage for the helium ion microscope that allows the secondary electron detector used for normal imaging to collect information from ions transmitted through the sample. We find that relative brightness in the transmission image scales directly with the membrane thickness as determined by atomic force microscopy measurements.

Type
Equipment and Techniques Development: Materials
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramoff, M.D., Magalhaes, P.J. & Ram, S.J. (2004). Image processing with ImageJ. Biophotonics Int 11(7), 3642.Google Scholar
Adiga, V.P., Ilic, B., Barton, R.A., Wison-rae, I., Craighead, H.G. & Parpia, J.M. (2012). Approaching intrinsic performance in ultra-thin silicon nitride drum resonators. J Appl Phys 112(6), 064323. Google Scholar
Bazou, D., Behan, G., Reid, C., Boland, J.J. & Zhang, H.Z. (2011). Imaging of human colon cancer cells using He-ion scanning microscopy. J Microsc 242(3), 290294.Google Scholar
Bell, D.C., Lemme, M.C., Stern, L.A., Williams, J. R. & Marcus, C.M. (2009). Precision cutting and patterning of graphene with helium ions. Nanotechnology 20(45), 455301. Google Scholar
Cannon, D.M., Flachsbart, B.R., Shannon, M.A., Sweedler, J.V. & Bohn, P.W. (2004). Fabrication of single nanofluidic channels in poly(methylmethacrylate) films via focused-ion beam milling for use as molecular gates. Appl Phys Lett 85(7), 12411243.CrossRefGoogle Scholar
Everhart, T.E. & Thornley, R.F.M. (1960). Wide-band detector for micro-microampere low-energy electron currents. J Sci Instrum 37(7), 246248.CrossRefGoogle Scholar
Giannuzzi, L.A., Drown, J.L., Brown, S.R., Irwin, R.B. & Stevie, F. (1998). Applications of the FIB lift-out technique for TEM specimen preparation. Microsc Res Tech 41(4), 285290.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Giannuzzi, L.A. & Stevie, F.A. (1999). A review of focused ion beam milling techniques for TEM specimen preparation. Micron 30(3), 197204.Google Scholar
Jepson, M., Liu, X., Bell, D., Ferranti, D., Inkson, B. & Rodenburg, C. (2011). Resolution limits of secondary electron dopant contrast in helium ion and scanning electron microscopy. Microsc Microanal 17(4), 637642.Google Scholar
Jepson, M.A.E., Inkson, B.J., Liu, X., Scipioni, L. & Rodenburg, C. (2009). Quantitative dopant contrast in the helium ion microscope. Europhys Lett 86(2), 26005. Google Scholar
Lai, S.Y., Briggs, D., Brown, A. & Vickerman, J.C. (1986). The relationship between electron and ion induced secondary-electron imaging—A review with new experimental observations. Surf Interface Anal 8(3), 93111.CrossRefGoogle Scholar
Lemme, M.C., Bell, D.C., Williams, J.R., Stern, L.A., Baugher, B.W.H., Jarillo-herrero, P. & Marcus, C.M. (2009). Etching of graphene devices with a helium ion beam. ACS Nano 3(9), 26742676.CrossRefGoogle ScholarPubMed
Marshall, M.M., Yang, J. & Hall, A.R. (2012). Direct and transmission milling of suspended silicon nitride membranes with a focused helium ion beam. Scanning 34(2), 101106.CrossRefGoogle ScholarPubMed
Mayer, J., Giannuzzi, L.A., Kamino, T. & Michael, J. (2007). TEM sample preparation and FIB-induced damage. MRS Bull 32(5), 400407.Google Scholar
Menard, L.D. & Ramsey, J.M. (2011). Fabrication of sub-5 nm nanochannels in insulating substrates using focused ion beam milling. Nano Lett 11(2), 512517.CrossRefGoogle ScholarPubMed
Menozzi, C., Gazzadi, G.C., Alessandrini, A. & Facci, P. (2005). Focused ion beam-nanomachined probes for improved electric force microscopy. Ultramicroscopy 104(3-4), 220225.Google Scholar
Ramachandra, R., Griffin, B. & Joy, D. (2009). A model of secondary electron imaging in the helium ion scanning microscope. Ultramicroscopy 109(6), 748757.Google Scholar
Santamore, D., Edinger, K., Orloff, J. & Melngailis, J. (1997). Focused ion beam sputter yield change as a function of scan speed. J Vac Sci Technol, B 15(6), 23462349.CrossRefGoogle Scholar
Scipioni, L., Alkemade, P., Sidorkin, V., Chen, P., Maas, D. & Van veldhoven, E. (2009). The helium ion microscope: Advances in technology and applications. Am Lab 41(12), 2628.Google Scholar
Scipioni, L., Stern, L.A., Notte, J., Sijbrandij, S. & Griffin, B. (2008). Helium ion microscope. Adv Mater Process 166(6), 2730.Google Scholar
Seah, M.P. (1990). Channel electron multipliers: Quantitative intensity measurement—efficiency, gain, linearity and bias effects. J Electron Spectros Relat Phenomena 50(1-2), 137157.CrossRefGoogle Scholar
Vasile, M.J., Grigg, D., Griffith, J.E., Fitzgerald, E. & Russell, P.E. (1991). Scanning probe tip geometry optimized for metrology by focused ion beam milling. J Vac Sci Technol B 9(6), 35693572.Google Scholar
Wanunu, M., Dadosh, T., Ray, V., Jin, J., McReynolds, L. & Drndic, M. (2010). Rapid electronic detection of probe-specific micrornas using thin nanopore sensors. Nat Nanotechnol 5(11), 807814.Google Scholar
Ward, B.W., Notte, J.A. & Economou, N.P. (2006). Helium ion microscope: A new tool for nanoscale microscopy and metrology. J Vac Sci Technol, B 24(6), 28712874.Google Scholar
Yang, J., Ferranti, D.C., Stern, L.A., Sanford, C.A., Huang, J., Ren, Z., Qin, L.-C. & Hall, A.R. (2011). Rapid and precise scanning helium ion microscope milling of solid-state nanopores for biomolecule detection. Nanotechnology 22(28), 285310. CrossRefGoogle ScholarPubMed
Zeigler, J., Biersack, J. & Littmark, U. (1985). The Stopping Range of Ions in Matter. New York: Pergamon Press. Available at http://www.srim.org.CrossRefGoogle Scholar