Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T02:49:25.216Z Has data issue: false hasContentIssue false

In Situ Transmission Electron Microscopy Imaging of Electromigration in Platinum Nanowires

Published online by Cambridge University Press:  06 August 2013

Maria Rudneva*
Affiliation:
Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
Bo Gao
Affiliation:
Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
Ferry Prins
Affiliation:
Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
Qiang Xu
Affiliation:
Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
Herre S.J. van der Zant
Affiliation:
Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
Henny W. Zandbergen
Affiliation:
Kavli Institute of Nanoscience, Delft University of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
*
*Corresponding author. E-mail: M.Rudneva@tudelft.nl
Get access

Abstract

In situ transmission electron microscopy was performed on the electromigration in platinum (Pt) nanowires (14 nm thick, 200 nm wide, and 300 nm long) with and without feedback control. Using the feedback control mode, symmetric electrodes are obtained and the gap usually forms at the center of the Pt nanowire. Without feedback control, asymmetric electrodes are formed, and the gap can occur at any position along the wire. The three-dimensional gap geometries of the electrodes in the Pt nanowire were determined using high-angle annular dark-field scanning transmission electron microscopy; the thickness of the nanowire is reduced from 14 nm to only a few atoms at the edge with a gap of about 5–10 nm.

Type
Research Article
Copyright
Copyright © Microscopy Society of America 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: Max Planck Institute for Solid State Research, Heisenbergstrasse 1, D-70569 Stuttgart, Germany

References

Esen, G. & Fuhrer, M.S. (2005). Temperature control of electromigration to form gold nanogap junctions. Appl Phys Lett 87, 263101-1–3.Google Scholar
Gao, B., Osorio, E.A., Babaei Gaven, K. & van der Zant, H.S.J. (2009). Three-terminal electric transport measurements on gold nano-particles combined with ex situ TEM inspection. Nanotechnology 20, 415207.10.1088/0957-4484/20/41/415207Google Scholar
Gao, B., Rudneva, M., McGarrity, K.S., Xu, Q., Prins, F., Thijssen, J.M., Zandbergen, H. & van der Zant, H.S. (2011). In situ transmission electron microscopy imaging of grain growth in a platinum nanobridge induced by electric current annealing. Nanotechnology 22(20), 205705.Google Scholar
Grose, J.E., Tam, E.S., Timm, C., Scheloske, M., Ulgut, B., Parks, J.J., Abrua, H.D., Harneit, W. & Ralph, D.C. (2008). Tunnelling spectra of individual magnetic endofullerene molecules. Nat Mater 7, 884889.10.1038/nmat2300Google Scholar
Heersche, H.B., Lientschnig, G., O'Neill, K., van der Zant, H.S.J. & Zandbergen, H.W. (2007). In situ imaging of electromigration-induced nanogap formation by transmission electron microscopy. Appl Phys Lett 91, 072107-1–3.Google Scholar
Ho, P.S. & Kwok, T. (1989). Electromigration in metals. Rep Prog Phys 52, 301348.10.1088/0034-4885/52/3/002Google Scholar
Houck, A.A., Labaziewicz, J., Chan, E.K., Folk, J.A. & Chuang, I.L. (2005). Kondo effect in electromigrated gold break junctions. Nano Lett 5(9), 16861688.Google Scholar
O'Neill, K., Osorio, E.A. & van der Zant, H.S.J. (2007). Self-breaking in planar few-atom Au constrictions for nanometer-spaced electrodes. Appl Phys Lett 90, 133109-1–3.Google Scholar
Park, H., Lim, A.K.L., Alivisatos, A.P., Park, J. & McEuen, P.L. (1999). Fabrication of metallic electrodes with nanometer separation by electromigration. Appl Phys Lett 75, 301303.Google Scholar
Prins, F., Hayashi, T., de Vos van Steenwijk, B.J.A., Gao, B., Osorio, E.A., Muraki, K. & van der Zant, H.S.J. (2009). Room-temperature stability of Pt nanogaps formed by self-breaking. Appl Phys Lett 94, 123108-1–3.Google Scholar
Smoluchowski, R. (1952). Theory of grain boundary diffusion. Phys Rev 87(3), 482487.10.1103/PhysRev.87.482Google Scholar
Strachan, D.R., Johnston, D.E., Guiton, B.S., Datta, S.S., Davies, P.K., Bonnell, D.A. & Charlie Johnson, A.T. (2008). Real-time TEM imaging of the formation of crystalline nanoscale gaps. Phys Rev Lett 100, 056805-1–4.Google Scholar
Strachan, D.R., Smith, D.E., Johnston, D.E., Park, T.-H., Therien, M.J., Bonnell, D.A. & Johnson, A.T. (2005). Controlled fabrication of nanogaps in ambient environment for molecular electronics. Appl Phys Lett 86, 043109-1–3.Google Scholar
Taychatanapat, T., Bolotin, K.I., Kuemmeth, F. & Ralph, D.C. (2007). Imaging electromigration during the formation of break junctions. Nano Lett 7(3), 652656.Google Scholar
Tu, K.N. (2003). Recent advances on electromigration in very-large-scale-integration of interconnects. J Appl Phys 94, 54515473.Google Scholar
van der Zant, H.S.J., Kervennic, Y., Poot, M., O'Neill, K., de Groot, Z., Thijssen, J.M., Heersche, H.B., Stuhr-Hansen, N., Bjdørnholm, T., Vanmaekelbergh, D., van Walree, C.A. & Jenneskens, L.W. (2006). Molecular three-terminal devices: Fabrication and measurements. Faraday Discuss 131, 347356.Google Scholar