Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-11T01:09:31.342Z Has data issue: false hasContentIssue false

In Vivo Laser Scanning Confocal Microscopy of the Ocular Surface in Glaucoma

Published online by Cambridge University Press:  27 February 2014

Leonardo Mastropasqua*
Affiliation:
Ophthalmic Clinic, Department of Medicine and Aging Science, University G. d’Annunzio of Chieti-Pescara, Chieti, 66100, Italy
Luca Agnifili
Affiliation:
Ophthalmic Clinic, Department of Medicine and Aging Science, University G. d’Annunzio of Chieti-Pescara, Chieti, 66100, Italy
Rodolfo Mastropasqua
Affiliation:
Ophthalmology Unit, Department of Neurological, Neuropsychological, Morphological and Movement Sciences, University of Verona, Verona, 53593, Italy
Vincenzo Fasanella
Affiliation:
Ophthalmic Clinic, Department of Medicine and Aging Science, University G. d’Annunzio of Chieti-Pescara, Chieti, 66100, Italy
Mario Nubile
Affiliation:
Ophthalmic Clinic, Department of Medicine and Aging Science, University G. d’Annunzio of Chieti-Pescara, Chieti, 66100, Italy
Lisa Toto
Affiliation:
Ophthalmic Clinic, Department of Medicine and Aging Science, University G. d’Annunzio of Chieti-Pescara, Chieti, 66100, Italy
Paolo Carpineto
Affiliation:
Ophthalmic Clinic, Department of Medicine and Aging Science, University G. d’Annunzio of Chieti-Pescara, Chieti, 66100, Italy
Marco Ciancaglini
Affiliation:
Ophthalmic Clinic, Department of Surgical Science, University of L’Aquila, L’Aquila, 67100, Italy
*
*Corresponding author.r.mastropasqua@hotmail.com
Get access

Abstract

Over the past decade, knowledge about the ocular surface in glaucoma has significantly increased through the use of in vivo laser scanning confocal microscopy (LSCM). This in vivo imaging method can show modifications at the cellular level induced by anti-glaucoma drugs on ocular surface structures and adnexa in the eye. High-quality images of the conjunctiva, cornea, limbus, meibomian glands, and lymphoid structures during therapy can be obtained. In addition, LSCM opened new fields of research on the patho-physiology of aqueous humor (AH) hydrodynamics in untreated, and in medically or surgically treated glaucomatous patients. In these conditions, an enhancement of the trans-scleral AH outflow contributed to clarification of the mechanism of action of different anti-glaucoma medications and surgical approaches. Finally, the use of LSCM represented a huge advance in evaluation of bleb functionality after filtration surgery, defining the hallmarks of AH filtration through the bleb-wall and distinguishing functional from nonfunctional blebs. Thus, signs seen with LSCM may anticipate clinical failure, guiding the clinician in planning the appropriate timing of the various steps in bleb management. In this review we summarize the current knowledge about in vivo LSCM of the ocular surface in glaucoma.

Type
Biological Applications
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

a

L.M. and L.A. equally contributed to this work

References

Agnifili, L., Carpineto, P., Fasanella, V., Mastropasqua, R., Zappacosta, A., Di Staso, S., Costagliola, C. & Mastropasqua, L. (2012 a). Conjunctival findings in hyperbaric and low-tension glaucoma: An in vivo confocal microscopy study. Acta Ophthalmol 90, e132e137.CrossRefGoogle ScholarPubMed
Agnifili, L., Costagliola, C., Figus, M., Iezzi, G., Piattelli, A., Carpineto, P., Mastropasqua, R., Nardi, M. & Mastropasqua, L. (2012 b). Histological findings of failed gold micro shunts in primary open angle glaucoma. Graefes Arch Clin Exp Ophthalmol 250, 143149.CrossRefGoogle ScholarPubMed
Agnifili, L., Fasanella, V., Costagliola, C., Ciabattoni, C., Mastropasqua, R., Frezzotti, P. & Mastropasqua, L. (2013). In vivo confocal microscopy of meibomian glands in glaucoma. Br J Ophthalmol 97, 343349.CrossRefGoogle ScholarPubMed
Amar, N., Labbé, A., Hamard, P., Dupas, B. & Baudouin, C. (2008). Filtering blebs and aqueous pathway: An immunocytological and in vivo confocal microscopy study. Ophthalmology 115, 11541161.Google Scholar
Baratz, K.H., Nau, C.B., Winter, E.J., McLaren, J.W., Hodge, D.O., Herman, D.C. & Bourne, W.M. (2006). Effects of glaucoma medications on corneal endothelium, keratocytes, and subbasal nerves among participants in the ocular hypertension treatment study. Cornea 25, 10461052.CrossRefGoogle ScholarPubMed
Baudouin, C. (2008). Detrimental effect of preservatives in eyedrops: Implications for the treatment of glaucoma. Acta Ophthalmol 86, 716726.Google Scholar
Baudouin, C., Hamard, P., Liang, H., Creuzot-Garcher, C., Bensoussan, L. & Brignole, F. (2004). Conjunctival epithelial cell expression of interleukins and inflammatory markers in glaucoma patients treated over the long term. Ophthalmology 111, 21862192.Google Scholar
Baudouin, C., Labbé, A., Liang, H., Pauly, A. & Brignole-Baudouin, F. (2010). Preservatives in eye drops: The good, the bad and the ugly. Prog Ret Eye Res 29, 312334.CrossRefGoogle ScholarPubMed
Baudouin, C., Liang, H., Hamard, P., Riancho, L., Creuzot-Garcher, C., Warnet, J.M. & Brignole-Baudouin, F. (2008). The ocular surface of glaucoma patients treated over the long term expresses inflammatory markers related to both T-helper 1 and T-helper 2 pathways. Ophthalmology 115, 109115.Google Scholar
Bergonzi, C., Giani, A., Blini, M., Marchi, S., Luccarelli, S. & Staurenghi, G. (2010). Evaluation of prostaglandin analogue effects on corneal keratocyte density using scanning laser confocal microscopy. J Glaucoma 19, 617621.Google Scholar
Broadway, D.C., Grierson, I., O’Brien, C. & Hitchings, R.A. (1994). Adverse effects of topical antiglaucoma medication. II. The outcome of filtration surgery. Arch Ophthalmol 112, 14461454.CrossRefGoogle ScholarPubMed
Carpineto, P., Agnifili, L., Nubile, M., Fasanella, V., Doronzo, E., Mastropasqua, A. & Ciancaglini, M. (2011). Conjunctival and corneal findings in bleb-associated endophthalmitis: An in vivo confocal microscopy study. Acta Ophthalmol 89, 388395.CrossRefGoogle ScholarPubMed
Ciancaglini, M., Carpineto, P., Agnifili, L., Nubile, M., Fasanella, V., Lanzini, M., Calienno, R. & Mastropasqua, L. (2008 b). An in vivo confocal microscopy and impression cytology analysis of preserved and unpreserved levobunolol-induced conjunctival changes. Eur J Ophthalmol 18, 400407.Google Scholar
Ciancaglini, M., Carpineto, P., Agnifili, L., Nubile, M., Lanzini, M., Fasanella, V. & Mastropasqua, L. (2008 c). Filtering bleb functionality: A clinical, anterior segment optical coherence tomography and in vivo confocal microscopy study. J Glaucoma 17, 308317.CrossRefGoogle ScholarPubMed
Ciancaglini, M., Carpineto, P., Agnifili, L., Nubile, M., Fasanella, V. & Mastropasqua, L. (2008 a). Conjunctival modifications in ocular hypertension and primary open angle glaucoma: An in vivo confocal microscopy study. Invest Ophthalmol Vis Sci 49, 30423048.Google Scholar
Ciancaglini, M., Carpineto, P., Agnifili, L., Nubile, M., Fasanella, V., Mattei, P.A. & Mastropasqua, L. (2009). Conjunctival characteristics in primary open angle glaucoma and modifications induced by trabeculectomy with mitomycin C: An in vivo confocal microscopy study. Br J Ophthalmol 93, 12041209.Google Scholar
Doughty, M.J. & Bergmanson, J.P.G. (2003). New insights into surface cells and glands of the conjunctiva and their relevance to the tear film. Optometry 74, 485500.Google Scholar
Dua, H.S. & Azuara-Blanco, A. (2000). Limbal stem cells of the corneal epithelium. Surv Ophthalmol 44, 415425.Google Scholar
Efron, N., Al-Dossari, M. & Pritchard, N. (2009 a). In vivo confocal microscopy of the bulbar conjunctiva. Clin Experiment Ophthalmol 37, 335344.CrossRefGoogle ScholarPubMed
Efron, N., Al-Dossari, M. & Pritchard, N. (2009 b). In vivo confocal microscopy of the palpebral conjunctiva and tarsal plate. Optom Vis Sci 86, E1303E1308.Google Scholar
Efron, N., Al-Dossari, M. & Pritchard, N. (2010). Confocal microscopy of the bulbar conjunctiva in contact lens wear. Cornea 29, 4352.Google Scholar
Erie, J., McLaren, J. & Patel, S. (2009). Confocal microscopy in ophthalmology. Am J Ophthalmol 148, 639646.CrossRefGoogle ScholarPubMed
Frezzotti, P., Fogagnolo, P., Haka, G., Motolese, I., Iester, M., Bagaglia, S.A., Mittica, P., Menicacci, C., Rossetti, L. & Motolese, E. (2013). In vivo confocal microscopy of conjunctiva in preservative-free timolol 0.1% gel formulation therapy for glaucoma. Acta Ophthalmol. doi: 10.1111/aos.12261 [Epub ahead of print].CrossRefGoogle Scholar
Gatzioufas, Z., Labiris, G., Stachs, O., Hovakimyan, M., Schnaidt, A., Viestenz, A., Käsmann-Kellner, B. & Seitz, B. (2013). Biomechanical profile of the cornea in primary congenital glaucoma. Acta Ophthalmol 91, e29e34.CrossRefGoogle ScholarPubMed
Guthoff, R., Klink, T., Schlunck, G. & Grehn, F. (2006). In vivo confocal microscopy of failing and functioning filtering blebs: Results and clinical correlations. J Glaucoma 15, 552558.Google Scholar
Guthoff, R.F., Baudouin, C. & Stave, J. (2006). Conjunctiva-pathological findings. In Atlas of Confocal Laser Scanning In-Vivo Microscopy in Ophthalmology, Guthoff, R.F., Baudouin, C. & Stave, J. (Eds.), p. 134144. Berlin, Germany: Springer.Google Scholar
Hong, S., Lee, C.S., Seo, K.Y., Seong, G.J. & Hong, Y.J. (2006). Effects of topical antiglaucoma application on conjunctival impression cytology specimens. Am J Ophthalmol 142, 185186.Google Scholar
Ibrahim, O.M., Matsumoto, Y., Dogru, M., Adan, E.S., Wakamatsu, T.H., Goto, T., Negishi, K. & Tsubota, K. (2010). The efficacy, sensitivity, and specificity of in vivo laser confocal microscopy in the diagnosis of meibomian gland dysfunction. Ophthalmology 117, 665672.Google Scholar
Jurowska-Liput, J., Krzyzanowska, P., Szelepin, Ł. & Nizankowska, M.H. (2008). Evaluation on the cellular level the filtering bleb following trabeculectomy, using the HRT II cornea module. Klin Oczna 11, 343346.Google Scholar
Knop, N. & Knop, E. (2000). Conjunctiva-associated lymphoid tissue in the human eye. Invest Ophthalmol Vis Sci 41, 12701279.Google Scholar
Labbé, A., Alalwani, H., Van Went, C., Brasnu, E., Georgescu, D. & Baudouin, C. (2012). The relationship between subbasal nerve morphology and corneal sensation in ocular surface disease. Invest Ophthalmol Vis Sci 53, 49264931.Google Scholar
Labbé, A., Dupas, B., Hamard, P. & Baudouin, C. (2004). An evaluation of blebs after filtering surgery with the in vivo confocal microscope. J Fr Ophtalmol 27, 10831089.Google Scholar
Labbé, A., Dupas, B., Hamard, P. & Baudouin, C. (2005). In vivo confocal microscopy study of blebs after filtering surgery. Ophthalmology 112, 1979.Google Scholar
Labbé, A., Pauly, A., Liang, H., Brignole-Baudouin, F., Martin, C., Warnet, J.M. & Baudouin, C. (2006). Comparison of toxicological profiles of benzalkonium chloride and polyquaternium-1: An experimental study. J Ocul Pharmacol Ther 22, 267278.Google Scholar
Liang, H., Baudouin, C., Pauly, A. & Brignole-Baudouin, F. (2008). Conjunctival and corneal reactions in rabbits following short- and repeated exposure to preservative-free tafluprost, commercially available latanoprost and 0.02% benzalkonium chloride. Br J Ophthalmol 92, 12751282.Google Scholar
Liang, H., Baudouin, C., Labbe, A., Riancho, L. & Brignole-Baudouin, F. (2012 b). Conjunctiva-associated lymphoid tissue (CALT) reactions to antiglaucoma prostaglandins with or without BAK-preservative in rabbit acute toxicity study. PLoS One 7, e33913.CrossRefGoogle ScholarPubMed
Liang, H., Brignole-Baudouin, F., Riancho, L. & Baudouin, C. (2012 a). Reduced in vivo ocular surface toxicity with polyquad-preserved travoprost versus benzalkonium-preserved travoprost or latanoprost ophthalmic solutions. Ophthalmic Res 48, 89101.Google Scholar
Mansouri, K., Mendrinos, E., Shaarawy, T. & Dosso, A.A. (2011). Visualization of the trabeculo-Descemet membrane in deep sclerectomy after Nd:YAG goniopuncture: An in vivo confocal microscopy study. Arch Ophthalmol 129, 13051310.Google Scholar
Martone, G., Frezzotti, P., Tosi, G.M., Traversi, C., Mittica, V., Malandrini, A., Pichierri, P., Balestrazzi, A., Motolese, P.A., Motolese, I. & Motolese, E. (2009). An in vivo confocal microscopy analysis of effects of topical antiglaucoma therapy with preservative on corneal innervation and morphology. Am J Ophthalmol 147, 725735.Google Scholar
Mastropasqua, L., Agnifili, L., Ciancaglini, M., Nubile, M., Carpineto, P., Fasanella, V., Figus, M., Lazzeri, S. & Nardi, M. (2010). In vivo analysis of conjunctiva in gold micro shunt implantation for glaucoma. Br J Ophthalmol 94, 15921596.Google Scholar
Mastropasqua, L., Agnifili, L., Mastropasqua, R. & Fasanella, V. (2013 a). Conjunctival modifications induced by medical and surgical therapies in patients with glaucoma. Curr Opin Pharmacol 13, 5664.Google Scholar
Mastropasqua, L., Agnifili, L., Fasanella, V., Curcio, C., Ciabattoni, C., Mastropasqua, R., Toto, L. & Ciancaglini, M. (2013 b). Conjunctival goblet cells density and preservative-free tafluprost therapy for glaucoma: An in vivo confocal microscopy and impression cytology study. Acta Ophthalmol 91, e397e405.CrossRefGoogle Scholar
Mastropasqua, L., Agnifili, L., Salvetat, M.L., Ciancaglini, M., Fasanella, V., Nubile, M., Mastropasqua, R., Zeppieri, M. & Brusini, P. (2012). In vivo analysis of conjunctiva in canaloplasty for glaucoma. Br J Ophthalmol 96, 634639.CrossRefGoogle ScholarPubMed
Mastropasqua, L., Carpineto, P., Ciancaglini, M., Nubile, M & Doronzo, E. (2002). In vivo confocal microscopy in primary congenital glaucoma with megalocornea. J Glaucoma 11, 8389.Google Scholar
Mastropasqua, L. & Nubile, M. (2002). Confocal Microscopy of the Cornea. Thorofare, NJ: Slack Inc.Google Scholar
Mathers, W.D., Petroll, W.M., Jester, J.V. & Cavanagh, H.D. (1995). Basic science and applications of in vivo microscopy. Curr Opin Ophthalmol 6, 8694.CrossRefGoogle Scholar
Matsumoto, Y., Sato, E.A., Ibrahim, O.M., Dogru, M. & Tsubota, K. (2008). The application of in vivo laser confocal microscopy to the diagnosis and evaluation of meibomian gland dysfunction. Mol Vis 14, 12631271.Google Scholar
Messmer, E.M., Mackert, M.J., Zapp, D.M. & Kampik, A. (2006 a). In vivo confocal microscopy of normal conjunctiva and conjunctivitis. Cornea 25, 781788.Google Scholar
Messmer, E.M., Zapp, D.M., Mackert, M.J., Thiel, M. & Kampik, A. (2006 b). In vivo confocal microscopy of filtering blebs after trabeculectomy. Arch Ophthalmol 124, 10951103.CrossRefGoogle ScholarPubMed
Moreno, M., Villena, A., Cabarga, C., Sanchez-Font, E. & Garcia-Campos, J. (2003). Impression cytology of the conjunctival epithelium after anti-glaucomatous treatment with latanoprost. Eur J Ophthalmol 13, 553559.Google Scholar
Morita, K., Gao, Y., Saito, Y., Higashide, T., Kobayashi, A., Ohkubo, S. & Sugiyama, K. (2012). In vivo confocal microscopy and ultrasound biomicroscopy study of filtering blebs after trabeculectomy: Limbus-based versus fornix-based conjunctival flaps. J Glaucoma 21, 383391.CrossRefGoogle ScholarPubMed
Nelson, J.D. (1988). Impression cytology. Cornea 7, 7181.CrossRefGoogle ScholarPubMed
Nubile, M., Lanzini, M., Miri, A., Pocobelli, A., Calienno, R., Curcio, C., Mastropasqua, R., Dua, H.S. & Mastropasqua, L. (2013). In vivo confocal microscopy in diagnosis of limbal stem cell deficiency. Am J Ophthalmol 155, 220232.Google Scholar
Okabe, K., Kimura, H., Okabe, J., Kato, A., Shimizu, H., Ueda, T., Shimada, S. & Ogura, Y. (2005). Effect of benzalkonium chloride on trans-scleral drug delivery. Invest Ophthalmol Vis Sci 46, 703708.Google Scholar
Patel, D.V., Sherwin, T. & McGhee, C.N. (2006). Laser scanning in vivo confocal microscopy of the normal human corneoscleral limbus. Invest Ophthalmol Vis Sci 47, 28232827.CrossRefGoogle ScholarPubMed
Pauly, A., Roubeix, C., Liang, H., Brignole-Baudouin, F. & Baudouin, C. (2012). In vitro and in vivo comparative toxicological study of a new preservative-free latanoprost formulation. Invest Ophthalmol Vis Sci 53, 81728180.Google Scholar
Picht, G. & Grehn, F. (1998 a). Classification of filtering in trabeculectomy: Biomicroscopy and functionality. Curr Opin Ophthalmol 9, 28.Google Scholar
Picht, G. & Grehn, F. (1998 b). Development of the filtering bleb after trabeculectomy. Classification, histopathology, wound healing process. Ophthalmology 95, W380W387.Google Scholar
Pisella, P.J., Debbasch, C., Hamard, P., Creuzot-Garcher, C., Rat, P., Brignole, F. & Baudouin, C. (2004). Conjunctival proinflammatory and proapoptotic effects of latanoprost and preserved and unpreserved timolol: An ex vivo and in vitro study. Invest Ophthalmol Vis Sci 45, 13601368.Google Scholar
Puangsricharern, V. & Tseng, S.C. (1995). Cytologic evidence of corneal diseases with limbal stem cell deficiency. Ophthalmology 102, 14761485.Google Scholar
Ranno, T., Fogagnolo, P., Rossetti, L., Orzalesi, N. & Nucci, P. (2011). Changes in corneal parameters at confocal microscopy in treated glaucoma patients. Clin Ophthalmol 5, 10371042.Google Scholar
Rossi, G.C., Blini, M., Scudeller, L., Ricciardelli, G., Depolo, L., Amisano, A., Bossolesi, L., Pasinetti, G.M. & Bianchi, P.E. (2013). Effect of preservative-free tafluprost on keratocytes, sub-basal nerves, and endothelium: A single-blind one-year confocal study on naïve or treated glaucoma and hypertensive patients versus a control group. J Ocul Pharmacol Ther 29, 821825.CrossRefGoogle ScholarPubMed
Russ, H.H., Costa, V.P., Ferreira, F.M., Valgas, S.R., Correa Neto, M.A., Strobel, Ev & Truppel, J.H. (2007). Conjunctival changes induced by prostaglandin analogues and timolol maleate: a histomorphometric study. Arq Bras Oftalmol 70, 910916.Google Scholar
Sbeity, Z., Palmiero, P.M., Tello, C., Liebmann, J.M. & Ritch, R. (2009). Noncontact in vivo scanning laser microscopy of filtering blebs. J Glaucoma 18, 479483.Google Scholar
Sbeity, Z., Palmiero, P.M., Tello, C., Liebmann, J.M. & Ritch, R. (2011). Non-contact in vivo confocal scanning laser microscopy in exfoliation syndrome, exfoliation syndrome suspect and normal eyes. Acta Ophthalmol 89, 241247.Google Scholar
Schwartz, G.S. & Holland, E.J. (1998). Iatrogenic limbal stem cell deficiency. Cornea 17, 3137.Google Scholar
Schwartz, G.S. & Holland, E.J. (2001). Iatrogenic limbal stem cell deficiency: When glaucoma management contributes to corneal disease. J Glaucoma 10, 443445.Google Scholar
Sherwood, M.B., Grierson, I., Millar, L. & Hitchings, R.A. (1989). Long-term morphologic effects of antiglaucoma drugs on the conjunctiva and Tenon’s capsule in glaucoma patients. Ophthalmology 96, 327335.Google Scholar
Stave, J., Zinser, G., Grummer, G. & Guthoff, R. (2002). Modified Heidelberg retinal tomograph HRT. Initial results of in vivo presentation of corneal structures. Ophthalmology 99, 276280.Google Scholar
Toris, C.B., Koepsell, S.A., Yablonski, M.E. & Camras, C.B. (2002). Aqueous humor dynamics in ocular hypertensive patients. J Glaucoma 11, 253258.Google Scholar
Villani, E., Baudouin, C., Efron, N., Hamrah, P., Kojima, T., Patel, S.V., Pflugfelder, S.C., Zhivov, A. & Dogru, M. ( 2013 d). In vivo confocal microscopy of the ocular surface: From bench to bedside. Curr Eye Res 39, 213231.Google Scholar
Villani, E., Beretta, S., De Capitani, M., Galimberti, D., Viola, F. & Ratiglia, R. (2011 a). In vivo confocal microscopy of meibomian glands in Sjögrenʼs syndrome. Invest Ophthalmol Vis Sci 52, 933939.CrossRefGoogle Scholar
Villani, E., Canton, V., Magnani, F., Viola, F., Nucci, P. & Ratiglia, R. (2013 b). The aging meibomian gland: an in vivo confocal study. Invest Ophthalmol Vis Sci 54, 47354740.Google Scholar
Villani, E., Ceresara, G., Beretta, S., Magnani, F., Viola, F. & Ratiglia, R. (2011 b). In vivo confocal microscopy of meibomian glands in contact lens wearers. Invest Ophthalmol Vis Sci 52, 52155219.Google Scholar
Villani, E., Magnani, F., Viola, F., Santaniello, A., Scorza, R., Nucci, P. & Ratiglia, R. (2013 a). In vivo confocal evaluation of the ocular surface morpho-functional unit in dry eye. Optom Vis Sci 90, 576586.Google Scholar
Villani, E., Mantelli, F. & Nucci, P. (2013 c). In-vivo confocal microscopy of the ocular surface: Ocular allergy and dry eye. Curr Opin Allergy Clin Immunol 13, 569576.Google Scholar
Wakamatsu, T.H., Sato, E.A., Matsumoto, Y., Ibrahim, O.M., Dogru, M., Kaido, M., Ishida, R. & Tsubota, K. (2010). Conjunctival in vivo confocal scanning laser microscopy in patients with Sjögren syndrome. Invest Ophthalmol Vis Sci 51, 144150.Google Scholar
Wali, U.K., Bialasiewicz, A.A., Rizvi, S.G. & Al-Belushi, H. (2009). In vivo morphometry of corneal endothelial cells in pseudoexfoliation keratopathy with glaucoma and cataract. Ophthalmic Res 41, 175179.Google Scholar
Wang, Y., Le, Q., Zhao, F., Hong, J., Xu, J., Zheng, T. & Sun, X. (2011). Application of in vivo laser scanning confocal microscopy for evaluation of ocular surface diseases: Lessons learned from pterygium, meibomian gland disease, and chemical burns. Cornea 30(Suppl 1), S25S28.Google Scholar
Wei, A., Hong, J., Sun, X. & Xu, J. (2011). Evaluation of age-related changes in human palpebral conjunctiva and meibomian glands by in vivo confocal microscopy. Cornea 30, 10071012.Google Scholar
Wells, A., Ashraff, N., Hall, R. & Purdie, G. (2006). Comparison of two clinical bleb grading systems. Ophthalmology 113, 7783.Google Scholar
Zeng, K., Huang, L., Lai, M., Hai, L.H., Li, M. & Zhu, F. (2011). Correlation between morphologic appearance and function of filtering bleb in vivo. Eye Sci 26(4), 201207.Google Scholar
Zhivov, A., Stachs, O., Kraak, R., Stave, J. & Guthoff, R. (2006). In vivo confocal microscopy of the ocular surface. Ocul Surf 4, 8193.Google Scholar
Zhu, W., Hong, J., Zheng, T., Le, Q., Xu, J. & Sun, X. (2010). Age-related changes of human conjunctiva on in vivo confocal microscopy. Br J Ophthalmol 94, 14481453.Google Scholar