Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T13:47:40.948Z Has data issue: false hasContentIssue false

In-Situ Electrochemical Transmission Electron Microscopy for Battery Research

Published online by Cambridge University Press:  23 April 2014

B. Layla Mehdi*
Affiliation:
Fundamental and Computational Science Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
Meng Gu
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
Lucas R. Parent
Affiliation:
Fundamental and Computational Science Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
Wu Xu
Affiliation:
Energy and Environmental Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
Eduard N. Nasybulin
Affiliation:
Energy and Environmental Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
Xilin Chen
Affiliation:
Energy and Environmental Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
Raymond R. Unocic
Affiliation:
Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, TN 37831, USA
Pinghong Xu
Affiliation:
Department of Chemical Engineering and Materials Science, University of California-Davis, One Shields Ave, Davis, CA 95616, USA
David A. Welch
Affiliation:
Department of Chemical Engineering and Materials Science, University of California-Davis, One Shields Ave, Davis, CA 95616, USA
Patricia Abellan
Affiliation:
Fundamental and Computational Science Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
Ji-Guang Zhang
Affiliation:
Energy and Environmental Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
Jun Liu
Affiliation:
Energy and Environmental Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
Chong-Min Wang
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
Ilke Arslan
Affiliation:
Fundamental and Computational Science Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
James Evans
Affiliation:
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
Nigel D. Browning
Affiliation:
Fundamental and Computational Science Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
*
*Corresponding author.layla.mehdi@pnnl.gov
Get access

Abstract

The recent development of in-situ liquid stages for (scanning) transmission electron microscopes now makes it possible for us to study the details of electrochemical processes under operando conditions. As electrochemical processes are complex, care must be taken to calibrate the system before any in-situ/operando observations. In addition, as the electron beam can cause effects that look similar to electrochemical processes at the electrolyte/electrode interface, an understanding of the role of the electron beam in modifying the operando observations must also be understood. In this paper we describe the design, assembly, and operation of an in-situ electrochemical cell, paying particular attention to the method for controlling and quantifying the experimental parameters. The use of this system is then demonstrated for the lithiation/delithiation of silicon nanowires.

Type
In Situ Special Section
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aurbach, D., Gofer, Y., Ben-Zion, M. & Aped, P. (1992). The behavior of lithium electrodes in propylene and ethylene carbonate: The major factors that influence Li cycling efficiency. J Electroanal Chem 339, 451471.Google Scholar
Baeulieu, L.Y., Eberman, K.W., Turner, R.L., Krause, L.J. & Dahn, J.R. (2001). Colossal reversible volume change in lithium alloys. Electrochem Solid-State Lett 4, A137A140.Google Scholar
Beaulieu, L.Y., Hatchard, T.D., Bonakdarpour, A., Fleischauer, M.D. & Dahn, J.R. (2003). Reacton of Li with alloy thin films studied by in situ AFM. J Electrochem Soc 150, A1457A1464.Google Scholar
Bhattacharya, R., Key, B., Chen, H.L., Best, A.S., Hollenkamp, A.F. & Grey, C.P. (2010). In situ NMR observation of the formation of metallic lithium microstructures in lithium batteries. Nat Mater 9, 504510.Google Scholar
Bridges, C.A., Sun, X.-G., Zhao, J., Paranthaman, M.P. & Dai, S. (2012). In situ observation of solid electrolyte interphase formation in ordered mesoporous hard carbon by small-angle neutron scattering. J Phys Chem C 116, 77017711.Google Scholar
Chao, S.C., Yen, Y.C., Song, Y.F., Chen, Y.M., Wu, H.C. & Wu, N.L. (2010). A study on the interior microsctructures of working Sn particle electrode of Li-ion batteries by in situ X-ray transmission microscopy. Electrochem Commun 12, 234237.CrossRefGoogle Scholar
Chiu, K.F., Lin, K.M., Lin, H.C., Hsu, C.H., Chen, C.C. & Shieh, D.T. (2008). Electrochemical performances of Cu nanodots modified amorphous Si thin films for lithium–ion batteries. J Electrochem Soc 155(9), A623A627.Google Scholar
Chen, D., Indris, S., Schulz, M., Gamer, B. & Monig, R. (2011 a). In situ scanning electron microscopy on lithium-ion battery electrodes using an ionic liquid. J Power Sources 196, 63826387.Google Scholar
Chen, H.X., Xiao, Y., Wang, L. & Yang, Y. (2011b). Silicon nanowires coated with copper layer as anode materials for lithium-ion batteries. J Power Sources 196, 66576662.Google Scholar
De Jonge, N. & Ross, F.M. (2011). Electron microscopy of specimens in liquid. Nat Nanotechnol 6, 695704.CrossRefGoogle ScholarPubMed
Ding, F., Xu, W., Gaff, G.L., Zhang, J., Sushko, M.L., Chen, X., Shao, Y., Engelhard, M.H., Nie, Z., Xiao, J., Liu, X., Sushko, P.V., Liu, J. & Zhang, J.G. (2013). Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J Am Chem Soc 135, 44504456.Google Scholar
Evans, J.E., Jungjohann, K.L., Browning, N.D. & Arslan, I. (2011). Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett 11, 28092813.CrossRefGoogle ScholarPubMed
Fu, L.J., Liua, H., Li, C., Wua, Y.P., Rahmb, E., Holzeb, R. & Wu, H.Q. (2006). Surface modifications of electrode materials for lithium ion batteries. Solid State Sci 8, 113128.Google Scholar
Gu, M., Parent, L.R., Mehdi, B.L., Unocic, R.R., McDowell, M.T., Sacci, R.L., Xu, W., Connell, J.G., Xu, P., Abellan, P., Chen, X., Zhang, Y., Perea, D.E., Evans, J.E., Lauhon, L.J., Zhang, J.-G., Liu, J., Browning, N.D., Cui, Y., Arslen, I. & Wang, C.M. (2013). Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation of Si nanowire battery anode. Nano Lett 13, 61066112.Google Scholar
Hardwick, L.J., Ruch, P.W., Hahn, M., Scheifele, W., Kotz, R. & Novak, P. (2008). In situ Raman spectroscopy of insertion electrodes for lithium-ion batteries and supercapacitors: First cycle effects. J. Phys Chem Solids 69, 12321237.Google Scholar
Hatchard, T.D. & Dahn, J.R. (2004). In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J Electrochem Soc 151, A838A842.Google Scholar
Huang, J.Y., Zhong, L., Wang, C.M., Sullivan, J.P., Xu, W., Zhang, L.Q., Mao, S.X., Hudak, N.S., Liu, X.H., Subramanian, A., Fan, H.Y., Qi, L., Kushima, A. & Li, J. (2010). In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 15151520.Google Scholar
Key, B., Bhattacharya, R., Morcrette, M., Seznec, V., Tarascon, J.M. & Grey, C.P. (2009). Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries. J Am Chem Soc 131, 92399249.CrossRefGoogle ScholarPubMed
Key, B., Morcrette, M., Tarascon, J.M. & Grey, C.P. (2011). Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: Understanding the (de)lithiation mechanisms. J Am Chem Soc 133, 503512.Google Scholar
Kanamura, K., Shiraishi, S. & Takehara, Z. (1998). Elechtrochemical deposition of lithium metal in nonaqueous electrolyte containing (C2H5)4NF(HF)4 additive. J Fluorine Chem 2(87), 235243.Google Scholar
Kasavajjula, U., Wang, C.S. & Appleby, A.J. (2007). Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources 163, 10031039.Google Scholar
Lercher, D., Beattie, S., Morcrette, M., Edstroem, K., Jumas, J.C. & Tarascon, J.M. (2007). Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries. J Mater Chem 17, 37593772.Google Scholar
Li, J. & Dahn, J.R. (2007). An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J Electrochem Soc 154, A156A161.Google Scholar
Liu, X.H., Huang, S., Picraux, S.T., Li, J., Zhu, T. & Huang, J.Y. (2011). Reversible nanopore formation in Ge nanowires during lithiation-delithiation cycling: An in situ TEM study. Nano Lett 11, 39913997.Google Scholar
Liu, X.H., Liu, Y., Kushima, A., Zhang, S., Zhu, T., Li, J. & Huang, J.Y. (2012). In situ experiments of electrochemical lithiation and delithiation of individual nanostructures. Adv Energy Mater 2, 722741.Google Scholar
Long, B.R., Chan, M.K.Y., Greeley, J.P. & Gewirth, A.A. (2011). Dopant modulated Li insertion in Si for battery anodes: Theory and experiment. J Phys Chem C 115, 1891618921.Google Scholar
Mcdowell, M.T. & Cui, Y. (2011). Single nanostructure electrochemical devices for studying electronic properties and structural changes in lithiated Si nanowires. Adv Energy Mater 1, 894900.Google Scholar
McDowell, M.T., Woo, S.L., Wang, C. & Cui, Y. (2012 a). The effect of metallic coatings and crystallinity on the volume expansion of silicon during electrochemical lithiation/delithiation. Nano Energy 1(3), 401410.CrossRefGoogle Scholar
McDowell, M.T., Ryu, I., Lee, S.W., Wang, C., Nix, W.D. & Cui, Y. (2012 b). Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy. Adv Mater 24(45), 60346041.Google Scholar
Nishikawa, K., Fukunaka, Y., Sakka, T., Ogata, Y.H. & Selman, J.R. (2007). Measurement of concentration profiles during electrodeposition of Li metal from LiPF6-PC electrolyte solution. The role of SEI dynamics. J Electrochem Soc 154(10), A943A948.Google Scholar
Obrovac, M.N. & Christensen, L. (2004). Structural changes in silicon anodes during lithium insertion/extraction. Electrochem Solid-State Lett 7, A93A96.Google Scholar
Orsini, F., Du Pasquier, A., Beaudoin, B., Tarascon, J.M., Trentin, M., Langenhuizen, N., De Beer, E. & Notten, P. (1998). In-situ scanning electron microscopy (SEM) observation of interfaced within plastic lithium batteries. J Power Sources 76, 1929.Google Scholar
Osaka, T., Momma, T., Matsumoto, Y. & Uchido, Y. (1997). Surface characterization of electrodeposited lithium anode with enhanced cycleability obtained by CO2 addition. J Electrochem Soc 144, 17091713.Google Scholar
Radisic, A., Philippe, M., Vereecken, P.M., Hannon, J.B., Searson, P.C. & Ross, F.M. (2006). The morphology and nucleation kinetics of copper islands during electrodeposition. Nano Lett 6(2), 238242.Google Scholar
Rosso, M., Brissot, C., Teyssot, A., Dolle, M., Sannier, L., Tarascon, J.M., Bouchetc, R. & Lascaud, S. (2006). Dendrite short-circuit and fuse effect on Li/polymer/Li cells. Electrochim Acta 51, 53345340.Google Scholar
Sacci, R.L., Dudney, N.J., More, K.L., Parent, L.R., Arslan, I., Browning, N.D. & Unocic, R.R. (2014). Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in-situ electrochemical transmission electron microscopy. Chem Commun 50, 21042107.Google Scholar
Sethuraman Kowolik, K. & Srinivasan, V. (2011). Increased cycling efficiency and rate capability of copper-coated silicon anodes in lithium-ion batteries. J Power Sources 196, 393398.Google Scholar
Unocic, R.R., Sacci, R.L., Brown, G.M., Veith, G.M., Dudney, N.J., More, K.L., Walden, F.S., Gardiner, D.S., Damiano, D. & Nackashi, D.P. (2014). Quantitative electrochemical measurements using in situ ec-S/TEM devices. Microsc Microanal in this issue.Google Scholar
Wang, C.M., Xu, W., Liu, J., Choi, D.W., Arey, B., Saraf, L.V., Zhang, J.G., Yang, Z.G., Thevuthasan, S., Baer, D.R., Salmon, N. (2010). In situ transmission electron microscopy and spectroscopy studies of interfaces in Li ion batteries: Challenges and opportunities. J Mater Res 25, 15411547.Google Scholar
White, E.R., Singer, S.B., Augustyn, V., Hubbard, W.A., Mecklenburg, M., Dunn, B. & Regan, B.C. (2012). In situ transmission electron microscopy of lead dendrites and lead ions in aqueous solution. ACS Nano 6(7), 63086317.CrossRefGoogle ScholarPubMed
Williamson, M.J., Tromp, R.M., Vereecken, P.M., Hull, R. & Ross, F.M. (2003). Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nature Mater 2, 532536.CrossRefGoogle ScholarPubMed
Woehl, J.T., Evans, J.E., Arslan, I., Ristenpart, W.D. & Browning, N.D. (2012). Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano 6(10), 85998610.Google Scholar
Woehl, J.T., Jungjohann, K.L., Evans, J.E., Arslan, I., Ristenpart, W.D. & Browning, N.D. (2013). Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials. Ultramicroscopy 127, 5363.Google Scholar
Xu, K. (2004). Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev 104, 43034417.Google Scholar
Yang, X., Wen, Z., Zhu, X. & Huang, S. (2005). Electrodeposition of lithium film under dynamic conditions and its application in all-solid-state rechargeable lithium battery. Solid State Ionics 176, 1051 1055.Google Scholar
Yu, X., Wang, Q., Zhou, Y., Li, H., Yang, X.-Q., Nam, K.-W., Ehrlich, S.N., Khalid, S. & Meng, Y.S. (2012). High rate delithiation behavior of LiFePO4 studied by quick X-ray absorption spectroscopy. Chem Commun 48, 1153711539.Google Scholar

Mehdi Supplementary Material

Movie 1

Download Mehdi Supplementary Material(Video)
Video 78.4 MB

Mehdi Supplementary Material

Movie 2

Download Mehdi Supplementary Material(Video)
Video 31.3 MB