Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-01T06:07:52.774Z Has data issue: false hasContentIssue false

Inter-Experiment Machine Learning on APT experiments: New Insights from Meta-Analysis

Published online by Cambridge University Press:  30 July 2021

Martin Meier
Affiliation:
University of Oxford, England, United Kingdom
Paul Bagot
Affiliation:
University of Oxford, England, United Kingdom
Michael Moody
Affiliation:
University of Oxford, Oxford, England, United Kingdom
Daniel Haley
Affiliation:
University of Oxford, England, United Kingdom

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Advanced Application of Atom Probe Tomography: Specimen preparation, Instrumentation, and Data analysis
Copyright
Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America

References

Kühbach, M.; Bajaj, P.; Zhao, H.; Çelik, M. H.; Jägle, E. A.; Gault, B. npj Computational Materials 2021, 7, (1), 21.CrossRefGoogle Scholar
Haley, D.; Choi, P.; Raabe, D. Ultramicroscopy 2015, 159, 338-345.CrossRefGoogle Scholar
Madireddy, S.; Chung, D.-W.; Loeffler, T.; Sankaranarayanan, S. K. R. S.; Seidman, D. N.; Balaprakash, P.; Heinonen, O. Scientific Reports 2019 , 9, (1), 20140.CrossRefGoogle Scholar
Kellogg, G. L. The Journal of Chemical Physics 1981 , 74, (2), 1479-1487.CrossRefGoogle Scholar
Sundell, G.; Thuvander, M.; Andren, H. O. Ultramicroscopy 2013 , 132, 285-289.CrossRefGoogle Scholar
van der Maaten, L.; Hinton, G. J. Mach. Learn. Res. 2008 , 9, 2579-2605.Google Scholar