Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T13:34:35.954Z Has data issue: false hasContentIssue false

The Internal Structure of Macroporous Membranes and Transport of Surface-Modified Nanoparticles

Published online by Cambridge University Press:  09 July 2015

Sang J. Lee*
Affiliation:
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790-784, South Korea
Kiwoong Kim
Affiliation:
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790-784, South Korea
Sungsook Ahn
Affiliation:
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790-784, South Korea
*
*Corresponding author. sjlee@postech.ac.kr
Get access

Abstract

Understanding the morphological structure of membranes is essential to improve performance of membrane-based applications. In this paper, macroporous membranes were investigated and two methods introduced as an alternative for characterization of stereo-structure of the membranes. We combined the use of synchrotron X-ray nanotomography and small-angle X-ray scattering to examine the internal structure of cellulose acetate membranes with studies of the capture of surface-modified gold nanoparticles within these membranes. Finally, the morphological structures of macroporous membranes were visualized and their relationships with penetration tendency of surface-modified gold nanoparticles were explained.

Type
Materials Applications and Techniques
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, S., Jung, S.Y., Lee, J.P., Kim, H.K. & Lee, S.J. (2010). Gold nanoparticle flow sensors designed for dynamic X-ray imaging in biofluids. ACS Nano 4(7), 37533762.Google Scholar
Ahn, S., Jung, S.Y., Seo, E. & Lee, S.J. (2011). Gold nanoparticle-incorporated human red blood cells (RBCs) for X-ray dynamic imaging. Biomaterials 32(29), 71917199.Google Scholar
Blumen, A., Kohler, G. & Schaefer, D. (1989). Reactions in and on fractal media [and discussion]. Proc R Soc London A Math Phys Sci 423(1864), 189200.Google Scholar
Bose, S., Kuila, T., Nguyen, T.X.H., Kim, N.H., Lau, K.-T. & Lee, J.H. (2011). Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges. Prog Polym Sci 36(6), 813843.Google Scholar
Burns, D.B. & Zydney, A.L. (2000). Buffer effects on the zeta potential of ultrafiltration membranes. J Memb Sci 172(1), 3948.Google Scholar
Cevc, G. (1990). Membrane electrostatics. Biochimica et Biophysica Acta 1031(3), 311382.Google Scholar
Chapman, M. (2013). Evaluation of high productivity brackish desalination membrane. Desalination 308, 4146.Google Scholar
Chuen‐Thuen Chang, P., Lee, S.D. & Hsiue, G.H. (1998). Heterobifunctional membranes by plasma induced graft polymerization as an artificial organ for penetration keratoprosthesis. J Biomed Mater Res 39(3), 380389.Google Scholar
Dullien, F.A. (2012). Porous Media: Fluid Transport and Pore Structure. San Diego: Academic Press.Google Scholar
Feigin, L., Svergun, D.I. & Taylor, G.W. (1987). Structure Analysis by Small-Angle X-Ray and Neutron Scattering. New York: Springer.Google Scholar
Gugliuzza, A. & Drioli, E. (2007). PVDF and HYFLON AD membranes: Ideal interfaces for contactor applications. J Memb Sci 300(1), 5162.Google Scholar
Haddada, R., Ferjani, E., Roudesli, M.S. & Deratani, A. (2004). Properties of cellulose acetate nanofiltration membranes. Application to brackish water desalination. Desalination 167, 403409.Google Scholar
He, L., Li, D., Zhang, G., Webley, P.A., Zhao, D. & Wang, H. (2010). Synthesis of carbonaceous poly (furfuryl alcohol) membrane for water desalination. Ind Eng Chem Res 49(9), 41754180.CrossRefGoogle Scholar
Hoffman, A.S. (2012). Hydrogels for biomedical applications. Adv Drug Deliv Rev 64, 1823.Google Scholar
Homaeigohar, S.S., Buhr, K. & Ebert, K. (2010). Polyethersulfone electrospun nanofibrous composite membrane for liquid filtration. J Memb Sci 365(1), 6877.CrossRefGoogle Scholar
Jung, S.Y., Ahn, S., Seo, E. & Lee, S.J. (2013). Detection of circulating tumor cells via an X-ray imaging technique. J Synchrotron Radiat 20(2), 324331.CrossRefGoogle ScholarPubMed
Kesting, R.E., Subcasky, W. & Paton, J. (1968). Liquid membranes at the cellulose acetate membrane/saline solution interface in reverse osmosis. J Colloid Interface Sci 28(1), 156160.Google Scholar
Kim, T., Lee, C.-H., Joo, S.-W. & Lee, K. (2008). Kinetics of gold nanoparticle aggregation: Experiments and modeling. J Colloid Interface Sci 318(2), 238243.Google Scholar
Kniazeva, T., Hsiao, J.C., Charest, J.L. & Borenstein, J.T. (2011). A microfluidic respiratory assist device with high gas permeance for artificial lung applications. Biomed Microdevices 13(2), 315323.Google Scholar
Lauzze, K.C. & Chmielewski, D.J. (2006). Power control of a polymer electrolyte membrane fuel cell. Ind Eng Chem Res 45(13), 46614670.CrossRefGoogle Scholar
Li, B. & Sirkar, K.K. (2004). Novel membrane and device for direct contact membrane distillation-based desalination process. Ind Eng Chem Res 43(17), 53005309.Google Scholar
Lim, J., Park, S.Y., Huang, J.Y., Han, S.M. & Kim, H.-T. (2013). Large-field high-contrast hard X-ray Zernike phase-contrast nano-imaging beamline at Pohang Light Source. Rev Sci Instrum 84(1), 013707.Google Scholar
Lonsdale, H., Merten, U. & Riley, R. (1965). Transport properties of cellulose acetate osmotic membranes. J Appl Poly Sci 9(4), 13411362.Google Scholar
Lundqvist, M., Stigler, J., Elia, G., Lynch, I., Cedervall, T. & Dawson, K.A. (2008). Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Nat Acad Sci 105(38), 1426514270.Google Scholar
Park, Y.J., Nam, K.H., Ha, S.J., Pai, C.M., Chung, C.P. & Lee, S.J. (1997). Porous poly (L-lactide) membranes for guided tissue regeneration and controlled drug delivery: Membrane fabrication and characterization. Journal Control Release 43(2), 151160.Google Scholar
Ratnamala, G., Shah, N., Mehta, V., Rao, P. & Devotta, S. (2005). Integrated fuel cell processor for a 5-kW proton-exchange membrane fuel cell. Ind Eng Chem Res 44(5), 15351541.Google Scholar
Saxena, A., Tripathi, B.P., Kumar, M. & Shahi, V.K. (2009). Membrane-based techniques for the separation and purification of proteins: An overview. Adv Colloid Interface Sci 145(1), 122.Google Scholar
Sevillano, G., Rodriguez-Puyol, M., Martos, R., Duque, I., Lamas, S., Diez-Marques, M., Lucio, J. & Rodriguez-Puyol, D. (1990). Cellulose acetate membrane improves some aspects of red blood cell function in haemodialysis patients. Nephrol Dial Transplant 5(7), 497499.CrossRefGoogle ScholarPubMed
Stamatialis, D.F., Papenburg, B.J., Gironés, M., Saiful, S., Bettahalli, S.N., Schmitmeier, S. & Wessling, M. (2008). Medical applications of membranes: drug delivery, artificial organs and tissue engineering. J Memb Sci 308(1), 134.Google Scholar
Suksaeree, J., Charoenchai, L., Monton, C., Chusut, T., Sakunpak, A., Pichayakorn, W. & Boonme, P. (2013). Preparation of a pseudolatex-membrane for ketoprofen transdermal drug delivery systems. Ind Eng Chem Res 52(45), 1584715854.CrossRefGoogle Scholar
Tomadakis, M.M. & Sotirchos, S.V. (1991). Effective Kundsen diffusivities in structures of randomly overlapping fibers. AIChE J 37(1), 7486.Google Scholar
Tomadakis, M.M. & Sotirchos, S.V. (1993). Ordinary and transition regime diffusion in random fiber structures. AIChE J 39(3), 397412.Google Scholar
Tomaszewska, M. (2000). Concentration and purification of fluosilicic acid by membrane distillation. Ind Eng Chem Res 39(8), 30383041.Google Scholar
Verma, A. & Stellacci, F. (2010). Effect of surface properties on nanoparticle–cell interactions. Small 6(1), 1221.Google Scholar
Ye, S.H., Watanabe, J., Iwasaki, Y. & Ishihara, K. (2003). Antifouling blood purification membrane composed of cellulose acetate and phospholipid polymer. Biomaterials 24(23), 41434152.CrossRefGoogle ScholarPubMed
Supplementary material: File

Lee supplementary material

Supplementary Figures 1-3

Download Lee supplementary material(File)
File 654.8 KB