Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-27T13:23:02.175Z Has data issue: false hasContentIssue false

Laser-Assisted Atom Probe Tomography of Oxide Materials

Published online by Cambridge University Press:  11 April 2007

Christian Oberdorfer
Affiliation:
Institut für Materialphysik, Universität Münster, Wilhelm-Klemm-Straße 10, D-48149 Münster, Germany
Patrick Stender
Affiliation:
Institut für Materialphysik, Universität Münster, Wilhelm-Klemm-Straße 10, D-48149 Münster, Germany
Christoph Reinke
Affiliation:
Institut für Materialphysik, Universität Münster, Wilhelm-Klemm-Straße 10, D-48149 Münster, Germany
Guido Schmitz
Affiliation:
Institut für Materialphysik, Universität Münster, Wilhelm-Klemm-Straße 10, D-48149 Münster, Germany
Get access

Abstract

Atom probe tomography provides a chemical analysis of nanostructured materials with outstanding resolution. However, due to the process of field evaporation triggered by nanosecond high voltage pulses, the method is usually limited to conductive materials. As part of recent efforts to overcome this limitation, it is demonstrated that the analysis of thick NiO and WO3 oxide layers is possible by laser pulses of 500 ps duration. A careful analysis of the mass spectra demonstrates that the expected stoichiometries are well reproduced by the measurement. The reconstruction of lattice planes proves that surface diffusion is negligible also in the case of thermal pulses.

Type
MATERIALS APPLICATIONS
Copyright
© 2007 Microscopy Society of America

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aiken, J.G. & Jordan, A.G. (1968). Electrical transport properties of single crystal nickel oxide. Phys Chem Solids 29, 21532167.Google Scholar
Bas, P., Bostel, A., Deconihout, B. & Blavette, D. (1995). A general protocol for the reconstruction of 3D atom probe data. Appl Surf Sci 87/88, 298304.Google Scholar
Berak, J.M. & Sienko, M.J. (1970). Effect of oxygen-deficiency on electrical transport properties of tungsten trioxide crystals. J Solid State Chem 2, 109133.Google Scholar
Cerezo, A., Smith, G.D.W. & Clifton, P.H. (2006). Measurement of temperature rises in the femtosecond laser pulsed three-dimensional atom probe. Appl Phys Lett 88, 154103154105.Google Scholar
Gault, B., Menand, A., De Geuser, F., Deconihout, B. & Danoix, R. (2006). Investigation of an oxide layer by femtosecond-laser-assisted atom probe tomography. Appl Phys Lett 88, 114101114103.Google Scholar
Gault, B., Vurpillot, F., Bostel, A., Menand, A. & Deconihout, B. (2005). Estimation of the tip field enhancement on a field emitter under laser illumination. Appl Phys Lett 86, 094101094103.Google Scholar
Kellogg, G.L. (1981). Determining the field emitter temperature during laser irradiation in the pulsed laser atom probe. J Appl Phys 52, 53205328.Google Scholar
Kellogg, G. & Tsong, T. (1980). Pulsed-laser atom-probe field-ion microscopy. J Appl Phys 51, 11841193.Google Scholar
Kuduz, M., Schmitz, G. & Kirchheim, R. (2004). Investigation of oxide tunnel barriers by atom probe tomography (TAP). Ultramicroscopy 101, 197205.Google Scholar
Kuhlmann, K.R., Martens, R.L., Kelly, T.F., Evans, N.D. & Miller, M.K. (2001). Fabrication of specimens of metamorphic magnetite crystals for field ion microscopy and atom probe microanalysis. Ultramicroscopy 89, 169176.Google Scholar
Melmed, A.J., Martinika, M., Girvin, S.M., Sakurai, T. & Kuk, Y. (1981). Analysis of high resistivity semiconductor specimens in an energy-compensated time-of-flight atom probe. Appl Phys Lett 39, 416417.Google Scholar
Nowak, C., Schmitz, G. & Kirchheim, R. (2006). Electric-field-induced low-temperature oxidation of tungsten nanowires. Appl Phys Lett 89, 143104143106.Google Scholar
Shashkov, D.A. & Seidman, D.N. (1995). Atomic-scale studies of segregation at ceramic/metal heterophase interfaces. Phys Rev Lett 75, 268271.Google Scholar
Vella, A., Vurpillot, F., Gault, B., Menand, A. & Deconihout, B. (2006). Evidence of field evaporation assisted by nonlinear optical rectification induced by ultrafast laser. Phys Rev B 73, 165416165422.Google Scholar
Vurpillot, F., Gault, B., Vella, A., Bouet, M. & Deconihout, B. (2006). Estimation of the cooling times for a metallic tip under laser illumination. Appl Phys Lett 88, 094105094107.Google Scholar