We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Type
Advances in Modeling, Simulation, and Artificial Intelligence in Microscopy and Microanalysis for Physical and Biological Systems
Uchida, S.Image processing and recognition for biological images. Dev. Growth Differ. 55, 523 (2013).10.1111/dgd.12054CrossRefGoogle ScholarPubMed
2
Bengio, Y., Courville, A. & Vincent, P.Representation Learning: A Review and New Perspectives. (2012).Google Scholar
3
Handfield, L.-F., Chong, Y. T., Simmons, J., Andrews, B. J. & Moses, A. M.Unsupervised clustering of subcellular protein expression patterns in high-throughput microscopy images reveals protein complexes and functional relationships between proteins. PLoS Comput. Biol. 9, e1003085 (2013).10.1371/journal.pcbi.1003085CrossRefGoogle ScholarPubMed
4
Li, Y., Majarian, T. D., Naik, A. W., Johnson, G. R. & Murphy, R. F.Point process models for localization and interdependence of punctate cellular structures. Cytom. Part A89, 633–643 (2016).10.1002/cyto.a.22873CrossRefGoogle ScholarPubMed
5
Kraus, O. Z. et al. Automated analysis of high-content microscopy data with deep learning. Mol. Syst. Biol. 13, (2017).10.15252/msb.20177551CrossRefGoogle ScholarPubMed
6
Sullivan, D. P. et al. Deep learning is combined with massive-scale citizen science to improve large-scale image classification. Nat. Biotechnol. 36, 820–828 (2018).10.1038/nbt.4225CrossRefGoogle ScholarPubMed
7
Jing, L. & Tian, Y.Self-supervised Visual Feature Learning with Deep Neural Networks: A Survey. (2019).Google Scholar
8
Lu, A. X., Kraus, O. Z., Cooper, S. & Moses, A. M.Learning unsupervised feature representations for single cell microscopy images with paired cell inpainting. PLOS Comput. Biol. 15, e1007348 (2019).10.1371/journal.pcbi.1007348CrossRefGoogle ScholarPubMed
9
Chong, Y. T. et al. Yeast Proteome Dynamics from Single Cell Imaging and Automated Analysis. Cell161, 1413–1424 (2015).10.1016/j.cell.2015.04.051CrossRefGoogle ScholarPubMed
10
Tkach, J. M. et al. Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nat. Cell Biol. 14, 966–76 (2012).10.1038/ncb2549CrossRefGoogle ScholarPubMed
11
Dubreuil, B. et al. YeastRGB: comparing the abundance and localization of yeast proteins across cells and libraries. Nucleic Acids Res. (2018) doi:10.1093/nar/gky941.Google Scholar
12
Thul, P. J. et al. A subcellular map of the human proteome. Science (80-.). 356, eaal3321 (2017).10.1126/science.aal3321CrossRefGoogle ScholarPubMed