Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-05T23:20:09.094Z Has data issue: false hasContentIssue false

Learning Frame Interpolation for Tilt Series Tomography

Published online by Cambridge University Press:  30 July 2020

Alexander Rakowski
Affiliation:
University of California-Irvine, Irvine, California, United States
Jovany Merham
Affiliation:
University of California-Irvine, Irvine, California, United States
Lingge Li
Affiliation:
University of California-Irvine, Irvine, California, United States
Pirre Baldi
Affiliation:
University of California-Irvine, Irvine, California, United States
Joesph Patterson
Affiliation:
University of California-Irvine, Irvine, California, United States

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Advances in Modeling, Simulation, and Artificial Intelligence in Microscopy and Microanalysis for Physical and Biological Systems
Copyright
Copyright © Microscopy Society of America 2020

References

Midgley, P.A. and Weyland, M., 2003. 3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography. Ultramicroscopy, 96(3-4), pp.413431.10.1016/S0304-3991(03)00105-0CrossRefGoogle ScholarPubMed
Arslan, I., Tong, J.R. and Midgley, P.A., 2006. Reducing the missing wedge: High-resolution dual axis tomography of inorganic materials. Ultramicroscopy, 106(11-12), pp.9941000.10.1016/j.ultramic.2006.05.010CrossRefGoogle ScholarPubMed
Ding, G., Liu, Y., Zhang, R. and Xin, H.L., 2019. A joint deep learning model to recover information and reduce artifacts in missing-wedge sinograms for electron tomography and beyond. Scientific reports, 9(1), pp.113.10.1038/s41598-019-49267-xCrossRefGoogle ScholarPubMed
Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C., Golkov, V., Van Der Smagt, P., Cremers, D. and Brox, T., 2015. Flownet: Learning optical flow with convolutional networks. In Proceedings of the IEEE international conference on computer vision (pp. 2758-2766).10.1109/ICCV.2015.316CrossRefGoogle Scholar
Niklaus, S., Mai, L. and Liu, F., 2017. Video frame interpolation via adaptive separable convolution. In Proceedings of the IEEE International Conference on Computer Vision(pp. 261-270).10.1109/ICCV.2017.37CrossRefGoogle Scholar
Koch, C.T., 2002. Determination of core structure periodicity and point defect density along dislocations.Google Scholar