Article contents
Lorentz Transmission Electron Microscopy Image Simulations of Experimental Nano-Chessboard Observations in Co-Pt Alloys
Published online by Cambridge University Press: 01 June 2018
Abstract
The magnetization configuration of a novel nano-chessboard structure consisting of L10 and L12 phases in a Co40Pt60 alloy is investigated using Lorentz transmission electron microscopy (LTEM) and micro-magnetic simulations. We show high-resolution LTEM images of nano-size magnetic features acquired through spherical aberration correction in Lorentz Fresnel mode. Phase reconstructions and LTEM image simulations are carried out to fully understand the magnetic microstructure. The experimental Fresnel images of the nano-chessboard structure show zig-zag shaped magnetic domain walls at the inter-phase boundaries between L10 and L12 phases. A circular magnetization distribution with vortex and anti-vortex type arrangement is evident in the phase reconstructed magnetic induction maps as well as simulated maps. The magnetic contrast in experimental LTEM images is interpreted with the help of magnetic induction maps simulated for various relative electron beam-sample orientations inside the TEM.
Keywords
- Type
- Materials Science Applications
- Information
- Copyright
- © Microscopy Society of America 2018
Footnotes
Cite this article: Kashyap I, Jin YM, Vetter EP, Floro JA and De Graef M (2018) Lorentz Transmission Electron Microscopy (TEM) Image Simulations of Experimental Nano-Chessboard Observations in Co-Pt Alloys. Microsc Microanal. doi: 10.1017/S143192761800034X
References
- 2
- Cited by