Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T10:22:00.457Z Has data issue: false hasContentIssue false

Mapping Chemical Disorder and Ferroelectric Distortions in the Double Perovskite Compound Sr2-xGdxMnTiO6 by Atomic Resolution Electron Microscopy and Spectroscopy

Published online by Cambridge University Press:  01 April 2014

Neven Biškup*
Affiliation:
Departamento de Física Aplicada III & Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Inmaculada Álvarez-Serrano
Affiliation:
Departamento de Química Inorganica, Universidad Complutense de Madrid, 28040 Madrid, Spain
Maria Veiga
Affiliation:
Departamento de Química Inorganica, Universidad Complutense de Madrid, 28040 Madrid, Spain
Alberto Rivera-Calzada
Affiliation:
Departamento de Física Aplicada III & Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain
Mar Garcia-Hernandez
Affiliation:
Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco 28049, Spain
Stephen J. Pennycook
Affiliation:
Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
Maria Varela
Affiliation:
Departamento de Física Aplicada III & Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
*
*Corresponding author.biskupneven@gmail.com
Get access

Abstract

In this work we report a study of the chemical and structural order of the double perovskite compound Sr2-xGdxMnTiO6 for compositions x=0, 0.25, 0.5, 0.75, and 1. A noticeable disorder at the B-site in the Mn and Ti sublattice is detected at the atomic scale by electron energy-loss spectroscopy for all x values, resulting in Mn-rich and Ti-rich regions. For x≥0.75, the cubic unit cell doubles and lowers its symmetry because of structural rearrangements associated with a giant ferroelectric displacement of the perovskite B-site cation. We discuss this finding in the light of the large electroresistance observed in Sr2-xGdxMnTiO6, x≥0.75.

Type
EDGE Special Issue
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbate, M., de Groot, F.M.F., Fuggle, J.C., Fujimori, A., Tokura, Y., Fujishima, Y., Strebel, O., Domke, M., Kaindl, G., van Elp, J., Thole, B.T., Sawatzky, G.A., Sacki, M. & Tsuda, N. (1991). Soft-x-ray-absorption studies of the location of extra charges induced by substitution in controlled-valence materials. Phys Rev B 44, 54195422.CrossRefGoogle ScholarPubMed
Akinaga, H. & Shima, H. (2010). Resistive random access memory (ReRAM) based on metal oxides. Proc IEEE 98, 22372251.CrossRefGoogle Scholar
Álvarez-Serrano, I., López, M.L., Arillo, M.A., García-Hernández, M., Rodríguez-Castelló, E., Jiménez-López, A., Veiga, J.M.L. & Pico, C. (2011). Structural characterization and evolution of the electronic behavior of new Sr2-xGdxMnTiO6 (0≤x≤1) perovskites. J Am Ceram Soc 94, 269276.CrossRefGoogle Scholar
Asamitsu, A., Tomioka, Y., Kuwahara, H. & Tokura, Y. (1997). Current switching of resistive states in magnetoresistive manganites. Nature 388, 5053.CrossRefGoogle Scholar
Ashcroft, N.W. & Mermin, N.D. (1976). Solid State Physics. USA: Thomson Learning. ISBN: 0-03-083993-9.Google Scholar
Biškup, N., de Andres, A., Nemes, N.M., Garcia-Hernandez, M., Glazyrin, K.V. & Mukovskii, Y.M. (2007). Colossal electroresistance without colossal magnetoresistance in La0.9Sr0.1MnO3 . Appl Phys Lett 90, 222502.CrossRefGoogle Scholar
Biškup, N., Garcia-Hernandez, M., Álvarez-Serrano, I., Lopez, M.L. & Veiga, M.L. (2011). Room temperature electroresistance in Sr2-xGdxMnTiO6 perovskites, 0≤x≤1. J Alloy Comp 509, 49174923.CrossRefGoogle Scholar
Bosman, M., Watanabe, M., Alexander, D.T.L. & Keast, V.J. (2006). Mapping chemical bonding information using multivariate analysis of electron energy-loss spectrum images. Ultramicroscopy 106, 10241032.CrossRefGoogle ScholarPubMed
Chanthbouala, A., Garcia, V., Cherifi, R.O., Bouzehouane, K., Fusil, S., Moya, X., Xavier, S., Yamada, H., Deranlot, C., Mathur, N.D., Bibes, M., Barthélémy, A. & Grollier, J. (2012). A ferroelectric memristor. Nat Mater 11, 860864.CrossRefGoogle ScholarPubMed
Garcia, V., Fusil, S., Bouzehouane, K., Enouz-Vedrenne, S., Mathur, N.D., Barthélémy, A. & Bibes, M. (2009). Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature 460, 8184.CrossRefGoogle ScholarPubMed
Haeni, J.H., Irvin, P., Chang, W., Uecker, R., Reiche, P., Li, Y.L., Choudhury, S., Tian, W., Hawley, M.E., Craigo, B., Tagantsev, A.K., Pan, X.Q., Streiffer, S.K., Chen, L.Q., Kirchoefer, S.W., Levy, J. & Schlom, D.G. (2004). Room-temperature ferroelectricity in strained SrTiO3 . Nature 430, 583586.CrossRefGoogle ScholarPubMed
Kathan-Galipeau, K., Wu, P.P., Li, Y.L., Chen, L.Q., Soukiassian, A., Xi, X.X., Schlom, D.G. & Bonnell, D.A. (2011). Quantification of internal fields and local polarization in ferroelectric superlattices. ACS Nano 5, 640646.CrossRefGoogle ScholarPubMed
Kwei, G.H., Lawson, A.C., Billinge, S.J.L. & Cheong, S.W. (1993). Structures of the ferroelectric phases of barium-titanate. J Phys Chem 97, 23682377.CrossRefGoogle Scholar
Kwon, D.-H., Kim, K.M., Jang, J.H., Jeon, J.M., Lee, M.H., Kim, G.H., Li, X.-S., Park, G.-S., Lee, B., Han, S., Kim, M. & Hwang, C.H.S. (2010). Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat Nanotechnol 5, 148153.CrossRefGoogle ScholarPubMed
Waser, R., Dittmann, R., Staikov, G. & Szot, K. (2009). Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges. Adv Mater 21, 26322663.CrossRefGoogle ScholarPubMed
Woicik, J.C., Shirley, E.L., Hellberg, C.S., Andersen, K.E., Sambasivan, S., Fischer, D.A., Chapman, B.D., Stern, E.A., Ryan, P., Ederer, D.L. & Li, H. (2007). Ferroelectric distortion in SrTiO3 thin films on Si (001) by X-ray absorption fine structure spectroscopy: Experiment and first-principles calculations. Phys Rev B 75, 140103.CrossRefGoogle Scholar
Woodward, D.I. & Reaney, I.M. (2005). Electron diffraction of tilted perovskites. Acta Cryst B 61, 387399.CrossRefGoogle ScholarPubMed
Zamkova, N.G., Zhandun, V.S. & Zinenko, V.I. (2011). Effect of Sr2+ ion substitution with trivalent ions (Sc3+, In3+, La3+, Bi3+) on its ferroelectric instability in SrTiO3 . Phys Solid State 53, 22902299.CrossRefGoogle Scholar