Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-29T06:51:32.162Z Has data issue: false hasContentIssue false

A Meshless Algorithm to Model Field Evaporation in Atom Probe Tomography

Published online by Cambridge University Press:  09 November 2015

Nicolas Rolland*
Affiliation:
Groupe de Physique des Matériaux, Université et INSA de Rouen – UMR CNRS 6634 – Normandie Université, France
François Vurpillot
Affiliation:
Groupe de Physique des Matériaux, Université et INSA de Rouen – UMR CNRS 6634 – Normandie Université, France
Sébastien Duguay
Affiliation:
Groupe de Physique des Matériaux, Université et INSA de Rouen – UMR CNRS 6634 – Normandie Université, France
Didier Blavette
Affiliation:
Groupe de Physique des Matériaux, Université et INSA de Rouen – UMR CNRS 6634 – Normandie Université, France
*
*Corresponding author. Nicolas.rolland1@univ-rouen.fr
Get access

Abstract

An alternative approach for simulating the field evaporation process in atom probe tomography is presented. The model uses the electrostatic Robin’s equation to directly calculate charge distribution over the tip apex conducting surface, without the need for a supporting mesh. The partial ionization state of the surface atoms is at the core of the method. Indeed, each surface atom is considered as a point charge, which is representative of its evaporation probability. The computational efficiency is ensured by an adapted version of the Barnes–Hut N-body problem algorithm. Standard desorption maps for cubic structures are presented in order to demonstrate the effectiveness of the method.

Type
Equipment and Techniques Development
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnes, J. & Hut, P. (1986). A hierarchical O(N Log N) force-calculation algorithm. Nature 324(6096), 446449.CrossRefGoogle Scholar
Djurabekova, F., Parviainen, S., Pohjonen, A. & Nordlund, K. (2011). Atomistic modeling of metal surfaces under electric fields: Direct coupling of electric fields to a molecular dynamics algorithm. Phys Rev E 83(2), 026704.CrossRefGoogle ScholarPubMed
Durand, E. (1953). Électrostatique et Magnétostatique. Paris, FR: Masson.Google Scholar
Forbes, R.G. (1999). The electrical surface as centroid of the surface-induced charge. Ultramicroscopy 79(1–4), 2534.Google Scholar
Forbes, R.G. & Chibane, K. (1986). Derivation of an activation energy formula in the context of charge draining. J Phys (Paris) 47(C7), 6570.Google Scholar
Forbes, R.G. & Wafi, M.K. (1980). An array model for the field adsorption of helium on tungsten (111). Surf Sci 93(1), 192212.Google Scholar
Geiser, B.P., Larson, D.J., Gerstl, S.S.A., Reinhard, D.A., Kelly, T.F., Prosa, T.J. & Olson, J.D. (2009). A system for simulation of tip evolution under field evaporation. Microsc Microanal 15(S2), 302303.Google Scholar
Grenier, A., Duguay, S., Barnes, J.P., Serra, R., Haberfehlner, G., Cooper, D., Bertin, F., Barraud, S., Audoit, G., Arnoldi, L., Cadel, E., Chabli, A. & Vurpillot, F. (2014). 3D analysis of advanced nano-devices using electron and atom probe tomography. Ultramicroscopy 136, 185192.Google Scholar
Kambham, A.K., Mody, J., Gilbert, M., Koelling, S. & Vandervorst, W. (2011). Atom-probe for FinFET dopant characterization. Ultramicroscopy 111(6), 535539.CrossRefGoogle ScholarPubMed
Klasing, K., Althoff, D., Wollherr, D. & Buss, M. (2009). Comparison of surface normal estimation methods for range sensing applications. In International Conference on Robotics and Automation (ICRA), Bicchi, A. (Ed.), pp. 3206–3211. Kobe: IEEE.Google Scholar
Kreuzer, H.J., Wang, L.C. & Lang, N.D. (1992). Self-consistent calculation of atomic adsorption on metals in high electric fields. Phys Rev B 45(20), 1205012055.Google Scholar
Oberdorfer, C., Eich, S.M., Lütkemeyer, M. & Schmitz, G. (2015). Applications of a versatile modelling approach to 3D atom probe simulations. Ultramicroscopy doi:10.1016/j.ultramic.2015.02.008 (in press).Google Scholar
Oberdorfer, C., Eich, S.M. & Schmitz, G. (2013). A full-scale simulation approach for atom probe tomography. Ultramicroscopy 128, 5567.CrossRefGoogle ScholarPubMed
Oberdorfer, C. & Schmitz, G. (2011). On the field evaporation behavior of dielectric materials in three-dimensional atom probe: a numeric simulation. Microsc Microanal 17(1), 1525.Google Scholar
Ono, T., Sasaki, T., Otsuka, J. & Hirose, K. (2005). First-principles study on field evaporation of surface atoms from W (011) and Mo (011) surfaces. Surf Sci 577(1), 4246.Google Scholar
Plummer, E.W. & Rhodin, T.N. (1968). Atomic binding of transition metals on clean single‐crystal tungsten surfaces. J Chem Phys 49(8), 34793496.Google Scholar
Robin, G. (1886). Sur la distribution de l’électricité à la surface des conducteurs fermés des conducteurs ouverts. Ann Sci Ecole Norm Supér, 3e série 3(Suppl), 358.Google Scholar
Robin, G. (1887). Distribution de L’électricité Sur Une Surface Fermée Convexe. CR Acad Sci Paris 104, 18341836.Google Scholar
Sánchez, C.G., Lozovoi, A.Y. & Alavi, A. (2004). Field-evaporation from first-principles. Mol Phys 102(9–10), 10451055.Google Scholar
Stukowski, A. (2010). Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model Simul Mater Sci Eng 18(1), 015012.Google Scholar
Vurpillot, F., Bostel, A. & Blavette, D. (2000). Trajectory overlaps and local magnification in three-dimensional atom probe. Appl Phys Lett 76(21), 31273129.Google Scholar
Vurpillot, F., Bostel, A., Menand, A. & Blavette, D. (1999). Trajectories of field emitted ions in 3D atom-probe. Eur Phys J Appl Phys 6(2), 217221.CrossRefGoogle Scholar
Vurpillot, F. & Oberdorfer, C. (2014). Modeling atom probe tomography: A review. Ultramicroscopy doi:10.1016/j.ultramic.2014.12.013 (in press).Google Scholar