Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-10T08:04:06.692Z Has data issue: false hasContentIssue false

Micron-Scale Deformation: A Coupled In Situ Study of Strain Bursts and Acoustic Emission

Published online by Cambridge University Press:  17 October 2017

Ádám István Hegyi
Affiliation:
Department of Materials Physics, Eötvös Loránd University, Pázmány Péter sétány 1/a, H-1117 Budapest, Hungary
Péter Dusán Ispánovity*
Affiliation:
Department of Materials Physics, Eötvös Loránd University, Pázmány Péter sétány 1/a, H-1117 Budapest, Hungary
Michal Knapek
Affiliation:
Faculty of Mathematics and Physics, Department of Physics of Materials, Charles University in Prague, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
Dániel Tüzes
Affiliation:
Department of Materials Physics, Eötvös Loránd University, Pázmány Péter sétány 1/a, H-1117 Budapest, Hungary
Kristián Máthis
Affiliation:
Faculty of Mathematics and Physics, Department of Physics of Materials, Charles University in Prague, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
František Chmelík
Affiliation:
Faculty of Mathematics and Physics, Department of Physics of Materials, Charles University in Prague, Ke Karlovu 5, 121 16 Prague 2, Czech Republic
Zoltán Dankházi
Affiliation:
Department of Materials Physics, Eötvös Loránd University, Pázmány Péter sétány 1/a, H-1117 Budapest, Hungary
Gábor Varga
Affiliation:
Department of Materials Physics, Eötvös Loránd University, Pázmány Péter sétány 1/a, H-1117 Budapest, Hungary
István Groma
Affiliation:
Department of Materials Physics, Eötvös Loránd University, Pázmány Péter sétány 1/a, H-1117 Budapest, Hungary
*
*Corresponding author. ispanovity@metal.elte.hu
Get access

Abstract

Plastic deformation of micron-scale crystalline materials differs considerably from bulk samples as it is characterized by stochastic strain bursts. To obtain a detailed picture of the intermittent deformation phenomena, numerous micron-sized specimens must be fabricated and tested. An improved focused ion beam fabrication method is proposed to prepare non-tapered micropillars with excellent control over their shape. Moreover, the fabrication time is less compared with other methods. The in situ compression device developed in our laboratory allows high-accuracy sample positioning and force/displacement measurements with high data sampling rates. The collective avalanche-like motion of the dislocations is observed as stress decreases on the stress–strain curves. An acoustic emission (AE) technique was employed for the first time to study the deformation behavior of micropillars. The AE technique provides important additional in situ information about the underlying processes during plastic deformation and is especially sensitive to the collective avalanche-like motion of the dislocations observed as the stress decreases on the deformation curves.

Type
Materials Science Applications
Copyright
© Microscopy Society of America 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arzt, E. (1998). Size effects in materials due to microstructural and dimensional constraints: A comparative review. Acta Mater 46(16), 56115626.CrossRefGoogle Scholar
Bohlen, J., Chmelík, F., Dobroň, P., Letzig, D., Lukáč, P. & Kainer, K. (2004). Acoustic emission during tensile testing of magnesium AZ alloys. J Alloys Compd 378(1), 214219.Google Scholar
Burek, M.J. & Greer, J.R. (2009). Fabrication and microstructure control of nanoscale mechanical testing specimens via electron beam lithography and electroplating. Nano Lett 10(1), 6976.Google Scholar
Chinh, N., Csikor, F., Kovács, Z. & Lendvai, J. (2000). Critical concentration of Mg addition for plastic instabilities in Al–Mg alloys. J Mater Res 15(5), 10371040.Google Scholar
Dimiduk, D.M., Woodward, C., LeSar, R. & Uchic, M.D. (2006). Scale-free intermittent flow in crystal plasticity. Science 312(5777), 11881190.Google Scholar
Dobroň, P., Chmelík, F., Bohlen, J., Hantzsche, K., Letzig, D. & Ulrich Kainer, K. (2009). Acoustic emission study of the mechanical anisotropy of the extruded AZ31 alloy. Int J Mater Res 100(6), 888891.Google Scholar
El-Awady, J.A. (2015). Unravelling the physics of size-dependent dislocation-mediated plasticity. Nat Commun 6, 5926.Google Scholar
Greer, J.R. & De Hosson, J.T.M. (2011). Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog Mater Sci 56(6), 654724.Google Scholar
Greer, J.R., Espinosa, H., Ramesh, K. & Nadgorny, E. (2008). Comment on “effects of focused ion beam milling on the nanomechanical behavior of a molybdenum-alloy single crystal”. Appl Phys Lett 92(9), 096101.Google Scholar
Gubicza, J., Chinh, N.Q., Horita, Z. & Langdon, T. (2004). Effect of Mg addition on microstructure and mechanical properties of aluminum. Mater Sci Eng A 387, 5559.Google Scholar
Heiple, C. & Carpenter, S. (1987). Acoustic emission from low temperature phase transformations in plutonium. J Nucl Mater 149(2), 168179.Google Scholar
Hütsch, J. & Lilleodden, E.T. (2014). The influence of focused-ion beam preparation technique on microcompression investigations: Lathe vs. annular milling. Scr Mater 77, 4951.Google Scholar
Ishitani, T., Umemura, K., Ohnishi, T., Yaguchi, T. & Kamino, T. (2004). Improvements in performance of focused ion beam cross-sectioning: Aspects of ion-sample interaction. J Electron Microsc 53(5), 443449.CrossRefGoogle ScholarPubMed
Ispánovity, P.D., Groma, I., Györgyi, G., Csikor, F.F. & Weygand, D. (2010). Submicron plasticity: Yield stress, dislocation avalanches, and velocity distribution. Phys Rev Lett 105(8), 085503.Google Scholar
Ispánovity, P.D., Hegyi, Á., Groma, I., Györgyi, G., Ratter, K. & Weygand, D. (2013). Average yielding and weakest link statistics in micron-scale plasticity. Acta Mater 61(16), 62346245.Google Scholar
Jennings, A.T., Burek, M.J. & Greer, J.R. (2010). Microstructure versus size: Mechanical properties of electroplated single crystalline cu nanopillars. Phys Rev Lett 104(13), 135503.Google Scholar
Kovács, Z., Ezzeldien, M., Máthis, K., Ispánovity, P., Chmelík, F. & Lendvai, J. (2014). Statistical analysis of acoustic emission events in torsional deformation of a vitreloy bulk metallic glass. Acta Mater 70, 113122.Google Scholar
Kraft, O., Gruber, P.A., Mönig, R. & Weygand, D. (2010). Plasticity in confined dimensions. Ann Rev Mater Res 40, 293317.Google Scholar
Lavrik, N.V., Sepaniak, M.J. & Datskos, P.G. (2004). Cantilever transducers as a platform for chemical and biological sensors. Rev Sci Instrum 75(7), 22292253.Google Scholar
Li, J., Malis, T. & Dionne, S. (2006). Recent advances in FIB–TEM specimen preparation techniques. Mater Character 57(1), 6470.Google Scholar
Miguel, M.-C., Vespignani, A., Zaiser, M. & Zapperi, S. (2002). Dislocation jamming and Andrade creep. Phys Rev Lett 89(16), 165501.Google Scholar
Miguel, M.-C., Vespignani, A., Zapperi, S., Weiss, J. & Grasso, J.-R. (2001). Intermittent dislocation flow in viscoplastic deformation. Nature 410(6829), 667671.Google Scholar
Moser, G., Felber, H., Rashkova, B., Imrich, P., Kirchlechner, C., Grosinger, W., Motz, C., Dehm, G. & Kiener, D. (2012). Sample preparation by metallography and focused ion beam for nanomechanical testing. Pract Metallogr 49(6), 343355.Google Scholar
Ng, K. & Ngan, A. (2008). Stochastic nature of plasticity of aluminum micro-pillars. Acta Mater 56(8), 17121720.Google Scholar
Reyntjens, S. & Puers, R. (2001). A review of focused ion beam applications in microsystem technology. J Micromech Microeng 11(4), 287.Google Scholar
Scruby, C., Wadley, H., Rusbridge, K. & Stockham-Jones, D. (1981). Influence of microstructure on acoustic emission during deformation of aluminium alloys. Metal Sci 15(11–12), 599608.CrossRefGoogle Scholar
Tabata, T., Fujtta, H. & Nakajima, Y. (1980). Behavior of dislocations in Al Mg single crystals observed by high voltage electron microscopy. Acta Metall 28(6), 795805.Google Scholar
Uchic, M.D., Dimiduk, D.M., Florando, J.N. & Nix, W.D. (2004). Sample dimensions influence strength and crystal plasticity. Science 305(5686), 986989.Google Scholar
Uchic, M.D., Shade, P.A. & Dimiduk, D.M. (2009). Plasticity of micrometer-scale single crystals in compression. Ann Rev Mater Res 39, 361386.Google Scholar
Volkert, C.A. & Lilleodden, E.T. (2006). Size effects in the deformation of sub-micron Au columns. Philos Mag 86(33–35), 55675579.Google Scholar
Weiss, J., Lahaie, F. & Grasso, J.R. (2000). Statistical analysis of dislocation dynamics during viscoplastic deformation from acoustic emission. J Geophys Res Solid Earth 105(B1), 433442.CrossRefGoogle Scholar
Weiss, J. & Marsan, D. (2003). Three-dimensional mapping of dislocation avalanches: Clustering and space/time coupling. Science 299(5603), 8992.Google Scholar
Weiss, J., Richeton, T., Louchet, F., Chmelík, F., Dobron, P., Entemeyer, D., Lebyodkin, M., Lebedkina, T., Fressengeas, C. & McDonald, R.J. (2007). Evidence for universal intermittent crystal plasticity from acoustic emission and high-resolution extensometry experiments. Phys Rev B 76(22), 224110.Google Scholar
Wurster, S., Treml, R., Fritz, R., Kapp, M., Langs, E., Alfreider, M., Ruhs, C., Imrich, P., Felber, G. & Kiener, D. (2015). Novel methods for the site specific preparation of micromechanical structures: Presented at the metallography conference 2014 in Leoben, Austria. Pract Metallogr 52(3), 131146.Google Scholar
Yazdi, N., Ayazi, F. & Najafi, K. (1998). Micromachined inertial sensors. Proc IEEE 86(8), 16401659.Google Scholar
Yilmaz, A. (2011). The Portevin–Le Chatelier effect: A review of experimental findings. Sci Technol Adv Mater 12, 063001.Google Scholar
Yu, Q., Mishra, R.K., Morris, J.W. Jr. & Minor, A.M. (2014). The effect of size on dislocation cell formation and strain hardening in aluminium. Philos Mag 94(18), 20622071.Google Scholar
Zaiser, M. (2006). Scale invariance in plastic flow of crystalline solids. Adv Phys 55(1–2), 185245.Google Scholar
Zaiser, M., Grasset, F.M., Koutsos, V. & Aifantis, E.C. (2004). Self-affine surface morphology of plastically deformed metals. Phys Rev Lett 93(19), 195507.Google Scholar
Zaiser, M. & Moretti, P. (2005). Fluctuation phenomena in crystal plasticity—A continuum model. J Stat Mech 2005(8), P08004.Google Scholar
Zaiser, M., Schwerdtfeger, J., Schneider, A., Frick, C., Clark, B.G., Gruber, P. & Arzt, E. (2008). Strain bursts in plastically deforming molybdenum micro-and nanopillars. Philos Mag 88(30–32), 38613874.CrossRefGoogle Scholar
Zapperi, S. (2012). Current challenges for statistical physics in fracture and plasticity. Eur Phys J B 85(9), 112.Google Scholar
Zhou, C., Beyerlein, I.J. & LeSar, R. (2011). Plastic deformation mechanisms of fcc single crystals at small scales. Acta Mater 59(20), 76737682.CrossRefGoogle Scholar