Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T05:49:05.941Z Has data issue: false hasContentIssue false

Micro-PIXE and Micro-RBS Characterization of Micropores in Porous Silicon Prepared Using Microwave-Assisted Hydrofluoric Acid Etching

Published online by Cambridge University Press:  07 February 2013

Muthanna Ahmad*
Affiliation:
IBA Laboratory, Chemistry Department, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria
Geoffrey W. Grime*
Affiliation:
Ion Beam Centre, Advanced Technology Institute, University of Surrey, Guildford GU2 7XH, UK
*
*Corresponding author. E-mail: cscientific2@aec.org.sy
**Corresponding author. E-mail: g.grime@surrey.ac.uk
Get access

Abstract

Porous silicon (PS) has been prepared using a microwave-assisted hydrofluoric acid (HF) etching method from a silicon wafer pre-implanted with 5 MeV Cu ions. The use of microbeam proton-induced X-ray emission (micro-PIXE) and microbeam Rutherford backscattering techniques reveals for the first time the capability of these techniques for studying the formation of micropores. The porous structures observed from micro-PIXE imaging results are compared to scanning electron microscope images. It was observed that the implanted copper accumulates in the same location as the pores and that at high implanted dose the pores form large-scale patterns of lines and concentric circles. This is the first work demonstrating the use of microwave-assisted HF etching in the formation of PS.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aravamudhan, S., Abdur Rahman, A. & Bhansali, S. (2005). Porous silicon based orientation independent, self-priming micro direct ethanol fuel cell. Sensor Actuator A 123124, 497504.CrossRefGoogle Scholar
Badawy, W.A. (2008). Effect of porous silicon layer on the performance of Si/oxide photovoltaic and photoelectrochemical cells. J Alloy Compd 464, 347351.CrossRefGoogle Scholar
Campbell, J.L., Boyd, N.I., Grassi, N., Bonnick, P. & Maxwell, J.A. (2010). The Guelph PIXE software package IV. Nucl Instrum Meth B 268, 33563363.Google Scholar
Chartier, C., Bastide, S. & Levy-Clement, C. (2008). Metal-assisted chemical etching of silicon in HF–H2O2 . Electrochim Acta 53, 55095516.Google Scholar
Cullis, A.G., Canham, L.T. & Calcott, P.D.J. (1997). The structural and luminescence properties of porous silicon. Appl Phys Rev 82, 909966.Google Scholar
Dziuban, J.A. (2000). Microwave enhanced fast anisotropic etching of monocrystalline silicon. Sensor Actuator 85, 133138.Google Scholar
Garman, E.F. & Grime, G.W. (2005). Elemental analysis of proteins by microPIXE. Prog Biophys Mol Biol 89, 173205.Google Scholar
Grime, G.W. & Guttmann-Bond, E. (2011). The identification of plaggen soils using external beam microPIXE analysis. X-Ray Spectrom 40, 210214.CrossRefGoogle Scholar
Hadjersi, T. (2007). Oxidizing agent concentration effect on metal-assisted electroless etching mechanism in HF-oxidizing agent-H2O solutions. Appl Surf Sci 253, 41564160.CrossRefGoogle Scholar
Huang, Z.P., Geyer, N., Liu, L.F., Li, M.Y. & Zhong, P. (2010). Metal-assisted electrochemical etching of silicon. Nanotechnology 21, 465301. Google Scholar
Jeynes, C., Bailey, M.J., Bright, N.J., Christopher, M.E., Grime, G.W., Jones, B.N., Palitsin, V.V. & Webb, R.P. (2012). “Total IBA”—Where are we? Nucl Instrum Meth B 271, 107118.Google Scholar
Jeynes, C., Webb, R.P. & Lohstroh, A. (2011). Ion beam analysis: A century of exploiting the electronic and nuclear structure of the atom for materials characterisation. Rev Accl Sci Tech 4, 4182.Google Scholar
Johansson, S.A.E., Campbell, J.L. & Malmqvist, K.G. (1995). Particle-Induced X-Ray Emission Spectrometry (PIXE). New York: John Wiley & Sons.Google Scholar
Koker, L. & Kolasinski, K.W. (2000). Photoelectrochemical etching of Si and porous Si in aqueous HF. Phys Chem Chem Phys 2, 277281.CrossRefGoogle Scholar
Li, X. & Bohn, P.W. (2000). Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Appl Phys Lett 77, 25722575.Google Scholar
Li, Y.Y., Cunin, F., Link, J.R., Gao, T., Betts, R.E., Reiver, S.H., Chin, V., Bhatia, S.N. & Sailor, M.J. (2003). Polymer replicas of photonic porous silicon for sensing and drug delivery applications. Science 299, 20452047.Google Scholar
Lin, V.S.-Y., Motesharei, K., Dancil, K.-P.S., Sailor, M.J. & Ghadiri, M.R. (1997). A porous silicon-based optical interferometric biosensor. Science 278, 840843.Google Scholar
Mathew, F.P. & Alocilja, E.C. (2005). Porous silicon-based biosensor for pathogen detection. Biosens Bioelectron 20, 16561661.Google Scholar
Mesjasz-Przybyłowicz, J. & Przybyłowicz, W.J. (2011). PIXE and metal hyperaccumulation: From soil to plants and insects. X-Ray Spectrom 40, 181185.CrossRefGoogle Scholar
Pleskov, Y.V. & Gurevich, Y.Y. (1986). Semiconductor Photoelectrochemistry. New York: Consultants Bureau.CrossRefGoogle Scholar
Ramos, A.R., Paúl, A., Rijniers, L., Da Silva, M.F. & Soares, J.C. (2002). Measurement of (p,p) elastic differential cross-sections for carbon, nitrogen, oxygen, aluminium and silicon in the 500–2500 keV range at 140° and 178° laboratory scattering angles. Nucl Instrum Meth B 190, 9599. Data retrieved from the IBANDL database: http://www-nds.iaea.org/ibandl/.Google Scholar
Ryan, C.G. (2011). PIXE and the nuclear microprobe: Tools for quantitative imaging of complex natural materials. Nucl Instrum Meth B 269, 21512162.Google Scholar
Saadoun, M., Ezzaouia, H., Bessais, B., Boujmil, M.F. & Bennaceur, R. (1999). Formation of porous silicon for large-area silicon solar cells: A new method. Sol Energy Mater Sol Cells 59, 377385.Google Scholar
Sakai, T., Oikawa, M. & Sato, T. (2005). External scanning proton microprobe—A new method for in-air elemental analysis. J Nucl Radiochem Sci 6, 6971.Google Scholar
Simon, A., Jeynes, C., Webb, R.P., Finnis, R., Tabatabaian, Z., Sellin, P.J., Breese, M.B.H., Fellows, D.F., Van Den Broek, R. & Gwilliam, R.M. (2004). The new surrey ion beam analysis facility. Nucl Instrum Meth B 219220, 405409.CrossRefGoogle Scholar
Simon, A., Pászti, F., Manuaba, A. & Kiss, Á.Z. (1999). Three-dimensional scanning of ion-implanted porous silicon. Nucl Instrum Meth B 158, 658664.CrossRefGoogle Scholar
Simon, A., Paszti, F., Uzonyi, I., Manuaba, A. & Kiss, A.Z. (1998a). Effect of surface topography on scanning RBS microbeam measurements. Vacuum 50, 503506.CrossRefGoogle Scholar
Simon, A., Paszti, F., Uzonyi, I., Manuaba, A., Kiss, A.Z. & Rajta, I. (1998b). Observation of surface topography using an RBS microbeam. Nucl Instrum Meth B 136138, 344349.CrossRefGoogle Scholar
Thönissen, M., Beger, M.G., Billat, S., Arens-Fisher, R., Krüger, M., Lüth, H., Theiss, W., Hillbrich, P., Grosse, G., Lerondel, G. & Frotscher, U. (1997). Analysis of the depth homogeneity of p-PS by reflectance measurements. Thin Solid Films 297, 9296.Google Scholar
Torres-Costa, V., Pászti, F., Climent-Font, A., Martín-Palma, R.J. & Martínez-Duart, J.M. (2005). Porosity profile determination of porous silicon interference filters by RBS. Phys Stat Sol C 2, 32083212.Google Scholar
Tripathy, S.P., Kolekar, R.V., Sunil, C., Sarkar, P.K., Dwivedi, K.K. & Sharma, D.N. (2010). Microwave-induced chemical etching (MCE): A fast etching technique for the solid polymeric track detectors (SPTD). Nucl Instrum Meth A 612, 421426 Google Scholar
Vázsonyi, É., Szilágyi, E., Petrik, P., Horváth, Z.E., Lohner, T., Fried, M. & Jalsovszky, G. (2001). Porous silicon formation by stain etching, Thin Solid Films 388, 295302.CrossRefGoogle Scholar
Walczak, R. & Dziuban, J.A. (2004). Microwave enhanced wet anisotropic etching of silicon utilizing a memory effect of KOH activation—A remote E2MSi process. Sensor Actuator A 116, 161170.Google Scholar
Watt, F., Van Kan, J.A., Rajta, I., Bettiol, A.A., Choo, T.F., Breese, M.B.H. & Osipowicz, T. (2003). The National University of Singapore high energy ion nano-probe facility: Performance tests. Nucl Instrum Meth B 210, 1420.Google Scholar
Yae, S., Kobayashi, T., Kawagishi, T., Fukumuro, N. & Matsuda, H. (2006). Antireflective porous layer formation on multicrystalline silicon by metal particle enhanced HF etching. Sol Energy 80, 701706.Google Scholar
Ziegler, J.F. & Biersack, J.P. (2012). Stopping and range of ions in matter (SRIM). Available at http://www.srim.org.Google Scholar