Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T05:22:55.006Z Has data issue: false hasContentIssue false

Microstructural Characterization of GaN Grown on SiC

Published online by Cambridge University Press:  01 August 2019

Sabyasachi Saha*
Affiliation:
Defence Metallurgical Research Laboratory, PO Kanchanbagh, Hyderabad 500058, India
Deepak Kumar
Affiliation:
Defence Metallurgical Research Laboratory, PO Kanchanbagh, Hyderabad 500058, India
Chandan K. Sharma
Affiliation:
Defence Metallurgical Research Laboratory, PO Kanchanbagh, Hyderabad 500058, India
Vikash K. Singh
Affiliation:
Solid State Physics Laboratory, Timarpur, Lucknow Road, Delhi 110054, India
Samartha Channagiri
Affiliation:
Advanced Facility for Microscopy and Microanalysis, Indian Institute of Science, Bangalore 560012, India
Duggi V. Sridhara Rao
Affiliation:
Defence Metallurgical Research Laboratory, PO Kanchanbagh, Hyderabad 500058, India
*
*Author for correspondence: Sabyasachi Saha, E-mail: sabyasachisaha@dmrl.drdo.in
Get access

Abstract

GaN films have been grown on SiC substrates with an AlN nucleation layer by using a metal organic chemical vapor deposition technique. Micro-cracking of the GaN films has been observed in some of the grown samples. In order to investigate the micro-cracking and microstructure, the samples have been studied using various characterization techniques such as optical microscopy, atomic force microscopy, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy (TEM). The surface morphology of the AlN nucleation layer is related to the stress evolution in subsequent overgrown GaN epilayers. It is determined via TEM evidence that, if the AlN nucleation layer has a rough surface morphology, this leads to tensile stresses in the GaN films, which finally results in cracking. Raman spectroscopy results also suggest this, by showing the existence of considerable tensile residual stress in the AlN nucleation layer. Based on these various observations and results, conclusions or propositions relating to the microstructure are presented.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al Balushi, ZY & Redwing, JM (2015). In situ stress measurements during direct MOCVD growth of GaN on SiC. J Mater Res 30, 29002909.Google Scholar
Amano, H, Baines, Y, Beam, E, Borga, M, Bouchet, T, Chalker, PR, Charles, M, Chen, KJ, Chowdhury, N, Chu, R, De Santi, C, De Souza, MM, Decoutere, S, Di Cioccio, L, Eckardt, B, Egawa, T, Fay, P, Freedsman, JJ, Guido, L, Häberlen, O, Haynes, G, Heckel, T, Hemakumara, D, Houston, P, Hu, J, Hua, M, Huang, Q, Huang, A, Jiang, S, Kawai, H, Kinzer, D, Kuball, M, Kumar, A, Lee, KB, Li, X, Marcon, D, März, M, McCarthy, R, Meneghesso, G, Meneghini, M, Morvan, E, Nakajima, A, Narayanan, EMS, Oliver, S, Palacios, T, Piedra, D, Plissonnier, M, Reddy, R, Sun, M, Thayne, I, Torres, A, Trivellin, N, Unni, V, Uren, MJ, Van Hove, M, Wallis, DJ, Wang, J, Xie, J, Yagi, S, Yang, S, Youtsey, C, Yu, R, Zanoni, E, Zeltner, S & Zhang, Y (2018). The 2018 GaN power electronics roadmap. J Phys D: Appl Phys 51, 163001.Google Scholar
Barghout, K & Chaudhuri, J (2004). Calculation of residual thermal stress in GaN epitaxial layers grown on technologically important substrates. J Mater Sci 39, 58175823.Google Scholar
Boeykens, S, Leys, MR, Germain, M, Belmans, R & Borghs, G (2004). Influence of AlGaN nucleation layers on structural and electrical properties of GaN on 4H-SiC. J Cryst Growth 272, 312317.Google Scholar
Chien, FR, Ning, XJ, Stemmer, S, Pirouz, P, Bremser, MD, Davis, RF, Chien, FR, Ning, XJ, Stemmer, S & Pirouz, P (1996). Growth defects in GaN films on 6H-SiC substrates. Appl Phys Lett 68, 26782680.Google Scholar
Chierchia, R, Böttcher, T, Heinke, H, Einfeldt, S, Figge, S & Hommel, D (2003). Microstructure of heteroepitaxial GaN revealed by x-ray diffraction. J Appl Phys 93, 89188925.Google Scholar
Cho, J, Park, JH, Kim, JK & Schubert, EF (2017). White light-emitting diodes: History, progress, and future. Laser Photonics Rev 11, 1600147.Google Scholar
Dadgar, A (2015). Sixteen years GaN on Si. Phys. Status Solidi B 252, 10631068.Google Scholar
Deng, G, Zhang, Y, Yu, Y, Huang, Z, Han, X & Chen, L (2018). Significantly reduced in-plane tensile stress of GaN films grown on SiC substrates by using graded AlGaN buffer and SiN x interlayer. Superlattice Microstruc 122, 7479.Google Scholar
Edwards, NV, Bremser, MD, Davis, RF, Batchelor, AD, Yoo, SD, Karan, CF & Aspnes, DE (1998). Trends in residual stress for GaN/AlN/6H-SiC heterostructures. Appl Phys Lett 73, 28082810.Google Scholar
Etzkorn, EV & Clarke, DR (2001). Cracking of GaN films. J Appl Phys 89, 10251034.Google Scholar
Faleev, N & Levin, I (2010). Strain and crystal defects in thin AlN/GaN structures on (0001) SiC. J Appl Phys 107, 113529.Google Scholar
Guojian, D, Liwei, G, Zhigang, X, Yao, C & Hong, C (2010). Characteristics of GaN grown on 6H-SiC with different AlN buffers. J Semicond 31, 15.Google Scholar
Harima, H (2002). Properties of GaN and related compounds studied by means of Raman scattering. J Phys Condens Matter 14, R967R993.Google Scholar
Horie, M, Ishihara, Y, Yamamoto, J, Kurimoto, M, Takano, T & Kawanishi, H (2002). Optical characteristic of the strain-controlled GaN epitaxial layer grown on 6H-SiC substrate by an adapting (GaN/AlN) multibuffer layer. Phys Status Solidi A 192, 151156.Google Scholar
Kakanakova-Georgieva, A, Persson, POÅ, Forsberg, U, Birch, J, Hultman, L & Janzén, E (2002). Epitaxial growth of AlN layers on SiC substrates in a hot-wall MOCVD system. Phys Status Solidi C 0, 205208.Google Scholar
Koleske, DD, Henry, RL, Twigg, ME, Culbertson, JC, Binari, SC, Wickenden, AE & Fatemi, M (2002). Influence of AlN nucleation layer temperature on GaN electronic properties grown on SiC. Appl Phys Lett 80, 43724374.Google Scholar
Kuball, M (2001). Raman spectroscopy of GaN, AlGaN and AlN for process and growth monitoring/control. Surf Interface Anal 31, 987999.Google Scholar
Kung, P & Razeghi, M (2000). III-Nitride wide bandgap semiconductors: a survey of the current status and future trends of the material and device technology. Opto-Electron Rev 8, 201239.Google Scholar
Li, Z & Bradt, RC (1986). Thermal expansion of the hexagonal (6H) polytype of silicon carbide. J Am Ceram Soc 69, 863866.Google Scholar
Liu, BT, Guo, SK, Ma, P, Wang, JX & Li, JM (2017). High-quality and strain-relaxation GaN epilayer grown on SiC substrates using AlN buffer and AlGaN interlayer. Chin Phys Lett 34, 048101.Google Scholar
Liu, L & Edgar, JH (2002). Substrates for gallium nitride epitaxy. Mater Sci Eng R Rep 37, 61128.Google Scholar
Morkoç, H (2009). Handbook of Nitride Semiconductors and Devices, Volume 3: GaN - based Optical and Electronic Devices. Weinheim: WILEY-VCHVerlag GmbH & Co. KGaA, ISBN: 978-3-527-40839-9.Google Scholar
Ozturk, MK, Arslan, E, Kars, I, Ozcelik, S & Ozbay, E (2013). Strain analysis of the GaN epitaxial layers grown on nitridated Si (111) substrate by metal organic chemical vapor deposition. Mater Sci Semicond Process 16, 8388.Google Scholar
Pernot, J, Bustarret, E, Rudziński, M, Hageman, PR & Larsen, PK (2007). Strain relaxation in GaN grown on vicinal 4H-SiC (0001) substrates. J Appl Phys 101, 033536.Google Scholar
Picard, YN, Liu, M, Lammatao, J, Kamaladasa, R & De Graef, M (2014). Theory of dynamical electron channeling contrast images of near-surface crystal defects. Ultramicroscopy 146, 7178.Google Scholar
Poblenz, C, Waltereit, P, Rajan, S, Mishra, UK, Speck, JS, Chin, P, Smorchkova, I & Heying, B (2005). Effect of AlN nucleation layer growth conditions on buffer leakage in AlGaN∕GaN high electron mobility transistors grown by molecular beam epitaxy (MBE). J Vac Sci Technol B Microelectron Nanometer Struct Process Meas Phenom 23, 15621567.Google Scholar
Ponce, FA, Krusor, BS, Major, JS, Plano, WE & Welch, DF (1995). Microstructure of GaN epitaxy on SiC using AlN buffer layers. Appl Phys Lett 67, 410412.Google Scholar
Qu, S, Li, S, Peng, Y, Zhu, X, Hu, X, Wang, C, Chen, X, Gao, Y & Xu, X (2010). Influence of the growth temperature of AlN buffer on the quality and stress of GaN films grown on 6H-SiC substrate by MOVPE. J Alloys Compd 502, 417422.Google Scholar
Quay, R (2008). Gallium Nitride Electronics, vol. 96. Berlin, Heidelberg: Springer-Verlag. https://doi.org/10.1007/978-3-540-71892-5.Google Scholar
Rao, DVS, Muraleedharan, K & Humphreys, CJ (2010). TEM specimen preparation techniques. In Microscopy: Science, Technology, Applications and Education, Méndez-Vilas, A & Díaz, J (Eds.), pp. 12321244. FORMATEX.Google Scholar
Reeber, RR & Wang, K (2000). Lattice parameters and thermal expansion of GaN. J Mater Res 15, 4044.Google Scholar
Röder, C, Lipski, F, Habel, F, Leibiger, G, Abendroth, M, Himcinschi, C & Kortus, J (2013). Raman spectroscopic characterization of epitaxially grown GaN on sapphire. J Phys D: Appl Phys 46, 285302.Google Scholar
Ruterana, P, Albrecht, M & Neugebauer, J (2003). Nitride Semiconductors: Handbook on Materials and Devices. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA.Google Scholar
Ruvimov, S, Liliental-Weber, Z, Dieker, C, Washburn, J, Koike, M, Amano, H & Akasaki, I (1997). TEM/HREM analysis of defects in GaN epitaxial layers grown by MOVPE on SiC and sapphire. In Materials Research Society Symposium Proceedings, vol. 468, pp. 287–292.Google Scholar
Song, S, Liu, Y, Liang, H, Yang, D, Zhang, K, Xia, X, Shen, R & Du, G (2013). Improvement of quality and strain relaxation of GaN epilayer grown on SiC substrate by in situ SiNx interlayer. J Mater Sci: Mater Electron 24, 29232927.Google Scholar
Waltereit, P, Brandt, O, Trampert, A, Ramsteiner, M, Reiche, M & Qi, M (1999). Influence of AlN nucleation layers on growth mode and strain relief of GaN grown on 6H-SiC(0001). Appl Phys Lett 74, 36603662.Google Scholar
Yaddanapudi, K, Saha, S, Raghavan, S, Muraleedharan, K & Banerjee, D (2018). The nitridation of sapphire as a precursor to GaN growth: Structure and chemistry. Cryst Growth Des 18, 49784986.Google Scholar
Zhao, DG, Xu, SJ, Xie, MH, Tong, SY & Yang, H (2003). Stress and its effect on optical properties of GaN epilayers grown on Si(111), 6H-SiC(0001), and c-plane sapphire. Appl Phys Lett 83, 677679.Google Scholar