Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T12:19:04.106Z Has data issue: false hasContentIssue false

Microstructure of Surface and Subsurface Layers of a Ni-Ti Shape Memory Microwire

Published online by Cambridge University Press:  15 January 2009

H. Tian
Affiliation:
EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
D. Schryvers*
Affiliation:
EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
S. Shabalovskaya
Affiliation:
MTM, K.U. Leuven, Kasteelpark Arenberg, B-3001 Leuven, Belgium On leave from Ames Laboratory–DOE, Ames, IA 50011, USA
J. Van Humbeeck
Affiliation:
MTM, K.U. Leuven, Kasteelpark Arenberg, B-3001 Leuven, Belgium
*
*Corresponding author. E-mail: nick.schryvers@ua.ac.be
Get access

Abstract

The microstructure of a 55 μm diameter, cold-worked Ni-Ti microwire is investigated by different transmission electron microscopy techniques. The surface consists of a few hundred nanometer thick oxide layer composed of TiO and TiO2 with a small fraction of inhomogeneously distributed Ni. The interior of the wire has a core-shell structure with primarily B2 grains in the 1 μm thick shell, and heavily twinned B19′ martensite in the core. This core-shell structure can be explained by a concentration gradient of the alloying elements resulting in a structure separation due to the strong temperature dependence of the martensitic start temperature. Moreover, in between the B2 part of the metallic core-shell and the oxide layer, a Ni3Ti interfacial layer is detected.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bayer, R. & Roguin, A. (1997). Early and late results of self-expandable Nitinol stets: Interim report from multicenter European study. J Interven Cardiol 10, 207213.Google Scholar
Berger-Gorbet, M., Broxup, B., Rivard, C. & Yahia, L. (1996). Biocompatibility testing of NiTi screws using immunohistochemistry of section containing metallic implants. J Biomed Mater Res 32, 243248.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Bernardini, J., Lexcellent, C., Daróczi, L. & Beke, D.L. (2003). Ni diffusion in near-equiatomic Ni-Ti and Ni-Ti(-Cu) alloys. Philosoph Mag 83, 329338.CrossRefGoogle Scholar
Brydson, R., Sauer, H. & Engel, W. (1991). Probing Materials Chemistry Using ELNES in TMS Annual Meeting, New Orleans, p. 131.Google Scholar
Brydson, R., Sauer, H., Engel, W., Thomas, J.M., Zeiter, E., Kosugi, N. & Kuroba, H. (1989). Electron-energy loss and X-ray absorption-spectroscopy of rutile and anatase—A test of structural sensitivity. J Phys: Condens Matter 1, 797812.Google Scholar
Cahn, R.W. & Haasen, P. (Eds.) (1983). Physical Metallurgy (3rd revised, enlarged ed., Parts 1 and 2). Amsterdam: North-Holland Physics Publishing.Google Scholar
Cisse, O., Savagodo, O., Wu, M. & Yahia, L. (2002). Effect of surface treatment of NiTi alloy on its corrosion behavior in Hank's solution. Biomed J Mater Res 61, 339345.Google Scholar
Clarke, B., Carroll, W., Rochev, Y., Hynes, M., Bradley, D. & Plumley, D. (2006). Influence of Nitinol wire surface treatment on oxide thickness and composition and its subsequent effect on corrosion resistance and nickel ion release. J Biomed Mater Res 79A, 6170.CrossRefGoogle Scholar
Egerton, R.F. (1996). Electron-Loss Spectroscopy in the Electron Microscope. New York: Plenum/Springer.CrossRefGoogle Scholar
Firstov, G.S., Vitchev, R.G., Kumar, H., Blanpain, B. & Van Humbeeck, J. (2002). Surface oxidation of NiTi shape memory alloy. Biomaterials 23, 48634871.CrossRefGoogle ScholarPubMed
Gonzales, R., Piqueras, J. & Bru, L.I. (1975). Formation of point-defect clusters during first cycles of copper fatigues. Phys Stat Sol 29, 161166.CrossRefGoogle Scholar
Kobayashi, Y., Honda, Y., Christie, L., Teirsten, P., Bailey, S., Brown, C., Matthews, R., Franco, A., Schwartz, R., Goldberg, S., Popma, J., Yock, P. & Fitzgerald, P. (2001). Long-term vessel response of self-expending coronary stent: A serial volumetric intravascular ultrasound analysis from the ASSURE trial. J Am College Cardiol 37, 13291334.Google Scholar
Kobayashi, S., Ohgoe, Y., Ozeki, K., Sato, K., Sumiya, T. & Hirakuri, K. (2005). Diamond-like carbon coatings on orthodontic archwires. Diamond Related Mater 14, 10941097.CrossRefGoogle Scholar
Kujala, S., Pajala, A., Kallioinen, M., Pramila, A., Tuukkanen, J. & Ryhänen, J. (2004). Biocompatibility and strength properties of nitinol shape memory alloy suture in rabbit tendon. Biomaterials 25, 353358.Google Scholar
Michiardi, A., Aparicio, C., Planell, J. & Gil, F. (2006). New oxidation treatment of NiTi shape memory alloys to obtain Ni-free surfaces and to improve biocompatibility. J Biomed Mat Res 77B, 249256.Google Scholar
Nishida, M., Yamauchi, K., Itai, I., Ohgi, H. & Chiba, A. (1995). High-resolution electron-microscopy studies of twin boundary structures in B19′ martensite in the Ti-Ni shape-memory alloy. Acta Metall Mater 43, 12291234.CrossRefGoogle Scholar
Okamoto, H. & Massalski, T.B. (2000). Impossible and improbable forms of binary phase diagrams. In Desk Handbook: Phase Diagrams for Binary Alloys, Okamoto, H. (Ed.), pp. xxxix–xliii. Materials Park, OH: ASM International.Google Scholar
Otsuka, K. & Ren, X. (2005). Physical metallurgy of Ti-Ni-based shape memory alloys. Prog Mater Sci 50(5), 511678.CrossRefGoogle Scholar
Potapov, P.L. & Schryvers, D. (2004). Measuring the absolute position of EELS ionisation edges in a TEM. Ultramicroscopy 99, 7385.CrossRefGoogle Scholar
Potapov, P.L., Tirry, W., Schryvers, D., Sivel, V.G.M., Wu, M.Y., Aslanidis, D. & Zandbergen, H. (2007). Cross-section transmission electron microscopy characterization of the near-surface structure of medical Nitinol superelastic tubing. J Mater Sci: Materials for Medicine 18, 483492.Google ScholarPubMed
Roguin, A., Granadier, E., Linn, S., Markiewicz, W. & Beyer, R. (1999). Continued expansion of Nitinol self-expandable stent angiographic analysis and 1-year clinical follow-up. Am Heart J 138(2), 326333.CrossRefGoogle Scholar
Ryhänen, J. (1999). In Biocompatibility Evaluation of Nickel-Titanium Shape Memory Metal Alloy. Ph.D. Thesis, Oulu University, Finland.Google Scholar
Ryhänen, J., Niemi, E., Serlo, S., Niemelä, E., Sandvik, P., Pernu, H. & Salo, T. (1997). Biocompatibility of nickel-titanium metal and its corrosion behaviour in human cell cultures. J Biomed Mater Res 35, 451457.Google Scholar
Shabalovskaya, S.A. (1996). On the nature of the biocompatibility and on medical applications of NiTi shape memory and superelastic alloys. Bio-Med Mater Eng 6, 267289.Google Scholar
Shabalovskaya, S.A. (2001). Physicochemical and biological aspects of Nitinol as a biomaterial. Int Mater Rev 46, 233250.Google Scholar
Shabalovskaya, S.A. (2002). Surface, corrosion and biocompatibility aspects of Nitinol as an implant material. Bio-Med Mater Eng 12, 69109.Google Scholar
Sui, J. & Cai, W. (2006). Effect of diamond-like carbon (DLC) on the properties of the NiTi alloys. Diamond Related Mater 15, 17201726.Google Scholar
Takeshita, F., Takata, H., Ayukawa, Y. & Suetsugu, T. (1997). Histomorphometric analysis of the response of rat tibia to shape memory alloy (Nitinol). Biomaterials 18, 2125.Google Scholar
Tang, W., Sundman, B., Sandström, R. & Qiu, C. (1999). New modelling of the B2 phase and its associated martensitic transformation in the Ti-Ni system. Acta Mater 47, 34573468.CrossRefGoogle Scholar
Wever, D., Velderhuizen, A., Vries, J.D., Busscher, H., Uges, D. & Van Horn, J. (1998). Electrochemical and surface characterization of NiTi alloy. Biomaterials 19, 761769.CrossRefGoogle Scholar
Wintenberger, M. (1959). Elimination des lacunes dans les aluminiums tres purs. Acta Metall 7, 549555.CrossRefGoogle Scholar
Yang, Z.Q., Tirry, W. & Schryvers, D. (2005). Analytical TEM investigations on concentration gradients surrounding Ni4Ti3 precipitates in Ni-Ti shape memory material. Scripta Mat 52, 11291134.CrossRefGoogle Scholar
Zhang, J., Fan, G., Zhou, Y., Ding, X., Otsuka, K., Nakamura, K., Sun, J. & Ren, X. (2007). Does order–disorder transition exist in near-stoichiometric Ti–Ni shape memory alloys? Acta Mater 55, 28972905.CrossRefGoogle Scholar