Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-28T21:52:42.910Z Has data issue: false hasContentIssue false

Monte Carlo Simulation of Characteristic Secondary Fluorescence in Electron Probe Microanalysis of Homogeneous Samples Using the Splitting Technique

Published online by Cambridge University Press:  18 May 2015

Mauricio Petaccia
Affiliation:
FaMAF, Universidad Nacional de Córdoba, Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba, Argentina Instituto de Física Enrique Gaviola (IFEG), 5000 Córdoba, Argentina
Silvina Segui
Affiliation:
Centro Atómico Bariloche, Comisión Nacional de Energía Atómica, Avenida Bustillo 9500, 8400 S.C. de Bariloche, Río Negro, Argentina CONICET, Av. Rivadavia 1917, C1033AAJ Buenos Aires, Argentina
Gustavo Castellano*
Affiliation:
FaMAF, Universidad Nacional de Córdoba, Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba, Argentina Instituto de Física Enrique Gaviola (IFEG), 5000 Córdoba, Argentina
*
*Corresponding author. gcas@famaf.unc.edu.ar
Get access

Abstract

Electron probe microanalysis (EPMA) is based on the comparison of characteristic intensities induced by monoenergetic electrons. When the electron beam ionizes inner atomic shells and these ionizations cause the emission of characteristic X-rays, secondary fluorescence can occur, originating from ionizations induced by X-ray photons produced by the primary electron interactions. As detectors are unable to distinguish the origin of these characteristic X-rays, Monte Carlo simulation of radiation transport becomes a determinant tool in the study of this fluorescence enhancement. In this work, characteristic secondary fluorescence enhancement in EPMA has been studied by using the splitting routines offered by PENELOPE 2008 as a variance reduction alternative. This approach is controlled by a single parameter NSPLIT, which represents the desired number of X-ray photon replicas. The dependence of the uncertainties associated with secondary intensities on NSPLIT was studied as a function of the accelerating voltage and the sample composition in a simple binary alloy in which this effect becomes relevant. The achieved efficiencies for the simulated secondary intensities bear a remarkable improvement when increasing the NSPLIT parameter; although in most cases an NSPLIT value of 100 is sufficient, some less likely enhancements may require stronger splitting in order to increase the efficiency associated with the simulation of secondary intensities.

Type
Techniques and Equipment Development
Copyright
© Microscopy Society of America 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acosta, E., Llovet, X., Coleoni, E., Riveros, J.A. & Salvat, F. (1998). Monte Carlo simulation of x-ray emission by kilovolt electron bombardment. J Appl Phys 83, 60386049.CrossRefGoogle Scholar
Bielajew, A. & Rogers, D. (1988). Variance-reduction techniques. In Monte Carlo Transport of Electrons and Photons (Ettore Majorana International Science Series, vol. 38, T. Jenkins, W. Nelson & A. Rindi (Eds.), pp. 407419. New York, NY: Plenum Press.CrossRefGoogle Scholar
Bote, D., Llovet, X. & Salvat, F. (2008). Monte Carlo simulation of characteristic x-ray emission from thick samples bombarded by kiloelectronvolt electrons. J Phys D Appl Phys 41, 105304.Google Scholar
Escuder, J.A., Llovet, X. & Salvat, F. (2008). Numerical calculation of secondary fluorescence effects near phase boundaries in EPMA. Microsc Microanal 14(Suppl 2), 126127.CrossRefGoogle Scholar
Escuder, J.A., Salvat, F., Llovet, X. & Donovan, J.J. (2010). Numerical correction for secondary fluorescence across phase boundaries in EPMA. IOP Conf Ser Mater Sci Eng 7, 012008.CrossRefGoogle Scholar
Fisher, G.L. (1971). An investigation of electron probe microanalysis corrections in nickel-cobalt alloys. J Phys D Appl Phys 4, 14391447.Google Scholar
Fournelle, J.H. (2007). The problem of secondary fluorescence in EPMA in the application of the Ti-in-zircon geothermometer and the utility of PENEPMA Monte Carlo Program. Microsc Microanal 13(Suppl 2), 1390 CD.Google Scholar
Fournelle, J.H., Kim, S. & Perepezko, J.H. (2005). Monte Carlo simulation of Nb Kα secondary fluorescence in EPMA: Comparison of PENELOPE simulations with experimental results. Surf Interface Anal 37, 10121016.CrossRefGoogle Scholar
Goldstein, J., Newbury, D., Joy, D., Lyman, C., Etchling, P., Lifshin, E., Sawyer, L. & Michael, J. (2003). Scanning Electron Microscopy and X-Ray Microanalysis, 3rd ed. New York, NY: Kluwer Academic/Plenum Publishers.CrossRefGoogle Scholar
Hu, Y. & Pan, Y. (2001). Method for the calculation of the chemical composition of a thin film by Monte Carlo simulation and electron probe microanalysis. X-Ray Spectrom 30, 110115.CrossRefGoogle Scholar
Kahn, H. & Harris, T.E. (1951). Estimation of particle transmission by random sampling. Natl Bur Stand Appl Math Ser 12, 2730.Google Scholar
Llovet, X., Fernández-Varea, J.M., Sempau, J. & Salvat, F. (2005). Monte Carlo simulation of X-ray emission using the general-purpose code PENELOPE. Surf Interface Anal 37, 10541058.CrossRefGoogle Scholar
Llovet, X. & Galan, G. (2003). Correction of secondary X-ray fluorescence near grain boundaries in electron microprobe analysis: Application to thermobarometry of spinel lherzolites. Am Mineral 88, 121130.CrossRefGoogle Scholar
Llovet, X., Pinard, P.T. & Salvat, F. (2014). Application of Monte Carlo calculations to improve quantitative electron probe. Microsc Microanal 20(Suppl 3), 708709.Google Scholar
Llovet, X., Sorbier, L., Campos, C.S., Acosta, E. & Salvat, F. (2003). Monte Carlo simulation of X-ray spectra generated by kilo-electron-volt electrons. J Appl Phys 93, 38443851.Google Scholar
Reed, S.J.B. (1965). Characteristic fluorescence corrections in electron-probe microanalysis. Br J Appl Phys 16, 913926.Google Scholar
Reed, S.J.B. (1993). Electron Probe Microanalysis, 2nd ed. Cambridge: Cambridge University Press.Google Scholar
Salvat, F., Escuder, J.A., Bote, D. & Llovet, X. (2007). Simulation of EPMA spectra using PENELOPE. Microsc Microanal 13(Suppl 2), 13881389.CrossRefGoogle Scholar
Salvat, F., Fernández-Varea, J.M. & Sempau, J. (2009). PENELOPE-2008, a Code System for Monte Carlo Simulation of Electron and Photon Transport. Issy-les-Moulineaux, France: OECD Nuclear Energy Agency.Google Scholar
Salvat, F., Llovet, X., Fernández-Varea, J.M. & Sempau, J. (2006). Monte Carlo simulation in electron probe microanalysis. Comparison of different simulation algorithms. Microchim Acta 155, 6774.CrossRefGoogle Scholar
Scott, V., Love, G. & Reed, S. (1995). Quantitative Electron-Probe Microanalysis, 2nd ed. New York, NY: Ellis Horwood Ltd.Google Scholar
Ugarte, D., Castellano, G., Trincavelli, J., del Giorgio, M. & Riveros, J.A. (1987). Evaluation of the main atomic number, absorption and fluorescence correction models in quantitative microanalysis. X-Ray Spectrom 16, 249254.Google Scholar
Venosta, L. & Castellano, G. (2013). Separate K-line contributions to fluorescence enhancement in electron probe microanalysis. Spectrochim Acta Part B 81, 5963.Google Scholar