Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T10:55:54.749Z Has data issue: false hasContentIssue false

Morphological Fractal Analysis of Shape in Cancer Cells Treated with Combinations of Microtubule-Polymerizing and -Depolymerizing Agents

Published online by Cambridge University Press:  22 June 2010

Sonal O. Uppal
Affiliation:
Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
Dmitri V. Voronine*
Affiliation:
Institut für Physikalische Chemie, Universität Würzburg, Würzburg 97074, Germany
Elizabeth Wendt
Affiliation:
Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
Carol A. Heckman
Affiliation:
Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA
*
Corresponding author. E-mail: dmitri.voronine@gmail.com
Get access

Abstract

The current prognostic parameters, including tumor volume, biochemistry, or immunohistochemistry, are not sufficient to reflect the properties of cancer cells that distinguish them from normal cells. Our focus is to evaluate the effects of a combination of microtubule-polymerizing Taxol® and -depolymerizing colchicine on IAR20 PC1 liver cells by measuring the surface fractal dimension as a descriptor of two-dimensional vascular geometrical complexity. The fractal dimension offers a rapid means of assessing cell shape. Furthermore, we show correlations of fractal dimensions of cell contours with the latent factors from our previously employed cell shape analysis.

Type
Biological Applications
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baish, J.W. & Jain, R.K. (2000). Fractals and cancer. Cancer Res 60(14), 36833688.Google ScholarPubMed
Cross, S.S. (1997). Fractals in pathology. J Pathol 182, 18.3.0.CO;2-B>CrossRefGoogle Scholar
Derry, W.B., Wilson, L. & Jordan, M.A. (1995). Substoichiometric binding of taxol suppresses microtubule dynamics. Biochemistry 34, 22032211.CrossRefGoogle ScholarPubMed
Feder, J. (1988). Fractals. New York: Plenum Press.CrossRefGoogle Scholar
Grizzi, F., Russo, C., Colombo, P., Franceschini, B., Frezza, E.E., Cobos, E. & Chiriva-Internati, M. (2005). Quantitative evaluation and modeling of two-dimensional neovascular network complexity: The surface fractal dimension. BMC Cancer 5, 1423.CrossRefGoogle ScholarPubMed
Heckman, C.A. (1985). Cell shape and growth. In Advances in Cell Culture, Maramorosch, K. (Ed.), 4, pp. 85156. New York: Academic Press.Google Scholar
Heckman, C.A. & Jamasbi, R.J. (1999). Describing shape dynamics in transformed cells through latent factors. Exp Cell Res 246, 6982.CrossRefGoogle ScholarPubMed
Heckman, C.A. & Plummer, I.H.K. (1992). A prospective assay for antipromoter effects in epithelial cells. Anticancer Res 12, 19151916.Google Scholar
Heckman, C.A., Plummer, I.H.K. & Mukherjee, R. (2000). Enhancement of the transformed shape phenotype by microtubule inhibitors and reversal by an inhibitor combination. Int J Oncol 16, 700723.Google ScholarPubMed
Heckman, C.A., Plummer, I.H.K. & Runyeon, C. (1996). Persistent effects of phorbol 12-myristate 13-acetate: Possible implication of vesicle traffic. J Cell Physiol 166, 217230.3.0.CO;2-A>CrossRefGoogle ScholarPubMed
Lopes, R. & Betrouni, N. (2009). Fractal and multifractal analysis: A review. Med Image Anal 13, 634649.CrossRefGoogle ScholarPubMed
Mandelbrot, B.B. (1982). Fractal Geometry of Nature. New York: W.H. Freeman.Google Scholar
Mareel, M.M. & De Mets, M. (1984). Effect of microtubule inhibitors on invasion and on related activities of tumor cells. Int Rev Cytol 90, 125167.CrossRefGoogle ScholarPubMed
Montesano, R., Saint Vincent, L., Drevon, C. & Tomatis, L. (1975). Production of epithelial and mesenchymal tumours with rat liver cells transformed in vitro. Int J Cancer 16, 550558.CrossRefGoogle ScholarPubMed
Olson, A.C., Larson, M.M. & Heckman, C.A. (1980). Classification of cultured mammalian cells by shape analysis and pattern recognition. PNAS USA 77, 15161520.CrossRefGoogle ScholarPubMed
Pietronero, L. & Tosatti, E. (Eds.) (1986). Fractals in Physics. Amsterdam: North-Holland.Google Scholar
Rigaut, J.P. (1984). Asymptotic fractals in the context of grey-scale images. J Microsc 133, 4154.CrossRefGoogle Scholar
Sandoval, I.V., Bonifacino, J.S., Klausner, R.D., Henkart, M. & Wehland, J. (1984). Role of microtubules in the organization and localization of the Golgi apparatus. J Cell Biol 99, 113118.CrossRefGoogle ScholarPubMed
Schiff, P.B., Fant, J. & Horowitz, S.D. (1979). Promotion of microtubule assembly in vitro by taxol. Nature 277, 665667.CrossRefGoogle ScholarPubMed
Schiff, P.B. & Horowitz, S.D. (1980). Taxol stabilizes microtubules in mouse fibroblast cells. PNAS USA 77, 15611565.CrossRefGoogle ScholarPubMed
Smith, T.G.J., Lange, G.D. & Marks, W.B. (1996). Fractal methods and results in cellular morphology—Dimensions, lacunarity and multifractals. J Neurosci Meth 69, 123136.CrossRefGoogle ScholarPubMed
Smith, T.G.J., Marks, W.B., Lange, G.D., Sheriff, W.H.J. & Neale, E.A. (1989). A fractal analysis of cell images. J Neurosci Meth 27, 173180.CrossRefGoogle ScholarPubMed
Uppal, S.O. (2006). Studies of microtubule inhibitor combinations on cytoskeleton architecture. PhD Dissertation, Bowling Green State University.Google Scholar
Uppal, S.O., Li, Y., Wendt, E., Cayer, M.L., Barnes, J., Conway, D., Boudreau, N. & Heckman, C.A. (2007). Pattern analysis of microtubule-polymerizing and -depolymerizing agent combinations as cancer chemotherapies. Int J Oncol 31, 12811291.Google ScholarPubMed
Uppuluri, S., Knipling, L., Sackett, D.L. & Wolff, J. (1993). Localization of the colchicine-binding site of tubulin. PNAS USA 90, 1159811602.CrossRefGoogle ScholarPubMed
Welling, D., Urani, J., Welling, L. & Wagner, E. (1996). Fractal analysis and imaging of the proximal nephron cell. Am J Physiol-Cell Physiol 270, C953C963.CrossRefGoogle ScholarPubMed
Wilson, L. & Farrell, K.W. (1986). Kinetics and steady state dynamics of tubulin addition and loss at opposite microtubule ends: The mechanism of action of colchicine. Ann NY Acad Sci 466, 690708.CrossRefGoogle ScholarPubMed
Wilson, L., Miller, H.P., Farrell, K.W., Snyder, K.B., Thompson, W.C. & Purich, D.L. (1985). Taxol stabilization of microtubules in vitro: Dynamics of tubulin addition and loss at opposite microtubule ends. Biochemistry 24, 52545262.CrossRefGoogle ScholarPubMed
Yvon, A.M.C., Wadsworth, P. & Jordan, M.A. (1999). Taxol suppresses dynamics of individual microtubules in living human cells. Mol Biol Cell 10, 947959.CrossRefGoogle Scholar