Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T13:04:22.795Z Has data issue: false hasContentIssue false

Multiphoton Flow Cytometry to Assess Intrinsic and Extrinsic Fluorescence in Cellular Aggregates: Applications to Stem Cells

Published online by Cambridge University Press:  05 August 2010

David G. Buschke
Affiliation:
Department of Biomedical Engineering, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA
Jayne M. Squirrell
Affiliation:
Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA
Hidayath Ansari
Affiliation:
Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA
Michael A. Smith
Affiliation:
Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA
Curtis T. Rueden
Affiliation:
Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA
Justin C. Williams
Affiliation:
Department of Biomedical Engineering, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA Material Sciences Program, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA
Gary E. Lyons
Affiliation:
Department of Biomedical Engineering, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA Department of Anatomy, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA
Timothy J. Kamp
Affiliation:
Departments of Medicine, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA
Kevin W. Eliceiri
Affiliation:
Department of Biomedical Engineering, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA
Brenda M. Ogle*
Affiliation:
Department of Biomedical Engineering, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA Laboratory for Optical and Computational Instrumentation, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA Material Sciences Program, University of Wisconsin at Madison, Madison, Wisconsin 53706, USA
*
Corresponding author. E-mail: ogle@wisc.edu
Get access

Abstract

Detection and tracking of stem cell state are difficult due to insufficient means for rapidly screening cell state in a noninvasive manner. This challenge is compounded when stem cells are cultured in aggregates or three-dimensional (3D) constructs because living cells in this form are difficult to analyze without disrupting cellular contacts. Multiphoton laser scanning microscopy is uniquely suited to analyze 3D structures due to the broad tunability of excitation sources, deep sectioning capacity, and minimal phototoxicity but is throughput limited. A novel multiphoton fluorescence excitation flow cytometry (MPFC) instrument could be used to accurately probe cells in the interior of multicell aggregates or tissue constructs in an enhanced-throughput manner and measure corresponding fluorescent properties. By exciting endogenous fluorophores as intrinsic biomarkers or exciting extrinsic reporter molecules, the properties of cells in aggregates can be understood while the viable cellular aggregates are maintained. Here we introduce a first generation MPFC system and show appropriate speed and accuracy of image capture and measured fluorescence intensity, including intrinsic fluorescence intensity. Thus, this novel instrument enables rapid characterization of stem cells and corresponding aggregates in a noninvasive manner and could dramatically transform how stem cells are studied in the laboratory and utilized in the clinic.

Type
Research Article
Copyright
Copyright © Microscopy Society of America 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Banerjee, B., Miedema, B.E. & Chandrasekhar, H.R. (1999). Role of basement membrane collagen and elastin in the autofluorescence spectra of the colon. J Investig Med 47(6), 326332.Google Scholar
Bayas, M.V., Leung, A., Evans, E. & Leckband, D. (2006). Lifetime measurements reveal kinetic differences between homophilic cadherin bonds. Biophys J 90(4), 13851395.CrossRefGoogle ScholarPubMed
Belenky, P., Bogan, K.L. & Brenner, C. (2007). NAD+ metabolism in health and disease. Trends Biochem Sci 32(1), 1219.Google Scholar
Berg, J.M., Tymoczko, J.L. & Stryer, L. (2002). Biochemistry. New York: W.H. Freeman.Google Scholar
Berthier, E. & Beebe, D.J. (2007). Flow rate analysis of a surface tension driven passive micropump. Lab Chip 7(11), 14751478.Google Scholar
Beurg, M., Fettiplace, R., Nam, J.-H. & Ricci, A.J. (2009). Localization of inner hair cell mechanotransducer channels using high-speed calcium imaging. Nat Neurosci 12(5), 553558.CrossRefGoogle ScholarPubMed
Bird, D.K., Eliceiri, K.W., Fan, C.H. & White, J.G. (2004). Simultaneous two-photon spectral and lifetime fluorescence microscopy. Appl Opt 43(27), 51735182.CrossRefGoogle ScholarPubMed
Bird, D.K., Yan, L., Vrotsos, K.M., Eliceiri, K.W., Vaughan, E.M., Keely, P.J., White, J.G. & Ramanujam, N. (2005). Metabolic mapping of MCF10A human breast cells via multiphoton fluorescence lifetime imaging of the coenzyme NADH. Cancer Res 65(19), 87668773.Google Scholar
Blake, A.J., Pearce, T.M., Rao, N.S., Johnson, S.M. & Williams, J.C. (2007). Multilayer PDMS microfluidic chamber for controlling brain slice microenvironment. Lab Chip 7(7), 842849.Google Scholar
Blinova, K., Carroll, S., Bose, S., Smirnov, A.V., Harvey, J.J., Knutson, J.R. & Balaban, R.S. (2005). Distribution of mitochondrial NADH fluorescence lifetimes: Steady-state kinetics of matrix NADH interactions. Biochemi 44(7), 25852594.Google Scholar
Campagnola, P.J. & Loew, L.M. (2003). Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms. Nat Biotechnol 21(11), 13561360.CrossRefGoogle ScholarPubMed
Campagnola, P.J., Millard, A.C., Terasaki, M., Hoppe, P.E., Malone, C.J. & Mohler, W.A. (2002). Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues. Biophys J 82(1Pt 1), 493508.Google Scholar
Carpenedo, R.L., Bratt-Leal, A.M., Marklein, R.A., Seaman, S.A., Bowen, N.J., McDonald, J.F. & McDevitt, T.C. (2009). Homogeneous and organized differentiation within embryoid bodies induced by microsphere-mediated delivery of small molecules. Biomaterials 30(13), 25072515.CrossRefGoogle ScholarPubMed
Centonze, V.E. & White, J.G. (1998). Multiphoton excitation provides optical sections from deeper within scattering specimens than confocal imaging. Biophys J 75(4), 20152024.Google Scholar
Chance, B., Legallais, V. & Schoener, B. (1962). Metabolically linked changes in fluorescence emission spectra of cortex of rat brain, kidney and adrenal gland. Nature 195, 10731075.CrossRefGoogle ScholarPubMed
Chen, Y.C., Chen, Y.W., Hsu, H.S., Tseng, L.M., Huang, P.I., Lu, K.H., Chen, D.T., Tai, L.K., Yung, M.C., Chang, S.C., Ku, H.H., Chiou, S.H. & Lo, W.L. (2009). Aldehyde dehydrogenase 1 is a putative marker for cancer stem cells in head and neck squamous cancer. Biochem Biophys Res Commun 385(3), 307313.CrossRefGoogle ScholarPubMed
Cho, Y.M., Kwon, S., Pak, Y.K., Seol, H.W., Choi, Y.M., Park Do, J., Park, K.S. & Lee, H.K. (2006). Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochem Biophys Res Commun 348(4), 14721478.CrossRefGoogle ScholarPubMed
Collins, T.J. (2007). ImageJ for microscopy. BioTechniques 43(S1), 2530.Google Scholar
Conklin, M.W., Provenzano, P.P., Eliceiri, K.W., Sullivan, R. & Keely, P.J. (2009). Fluorescence lifetime imaging of endogenous fluorophores in histopathology sections reveals differences between normal and tumor epithelium in carcinoma in situ of the breast. Cell Biochem Biophys 53(3), 145157.CrossRefGoogle ScholarPubMed
Dayan, D., Wolman, M. & Hammel, I. (1994). Histochemical study of the blue autofluorescence of collagen in oral irritation fibroma: Effects of age of patients and of the duration of lesions. Histol Histopathol 9(1), 1113.Google Scholar
Denk, W., Strickler, J.H. & Webb, W.W. (1990). Two-photon laser scanning fluorescence microscopy. Science 248(4951), 7376.CrossRefGoogle ScholarPubMed
Diagaradjane, P., Yaseen, M.A., Yu, J., Wong, M.S. & Anvari, B. (2005). Autofluorescence characterization for the early diagnosis of neoplastic changes in DMBA/TPA-induced mouse skin carcinogenesis. Lasers Surg Med 37(5), 382395.CrossRefGoogle ScholarPubMed
Diaspro, A. (1999). Two-photon excitation. A new potential perspective in flow cytometry. Minerva Biotechnol 11, 8792.Google Scholar
Dittrich, P.S. & Schwille, P. (2003). An integrated microfluidic system for reaction, high-sensitivity detection, and sorting of fluorescent cells and particles. Anal Chem 75(21), 57675774.CrossRefGoogle ScholarPubMed
Elknerova, K., Lacinova, Z., Soucek, J., Marinov, I. & Stockbauer, P. (2007). Growth inhibitory effect of the antibody to hematopoietic stem cell antigen CD34 in leukemic cell lines. Neoplasma 54(4), 311320.Google Scholar
Evseenko, D., Schenke-Layland, K., Dravid, G., Zhu, Y., Hao, Q.L., Scholes, J., Chao, X., Maclellan, W.R. & Crooks, G.M. (2009). Identification of the critical extracellular matrix proteins that promote human embryonic stem cell assembly. Stem Cells Dev 18(6), 919928.Google Scholar
Fernandez, L.A., Hatch, E.W., Armann, B., Odorico, J.S., Hullett, D.A., Sollinger, H.W. & Hanson, M.S. (2005). Validation of large particle flow cytometry for the analysis and sorting of intact pancreatic islets. Transplantation 80(6), 729737.Google Scholar
Fijnvandraat, A.C., van Ginneken, A.C., Schumacher, C.A., Boheler, K.R., Lekanne Deprez, R.H., Christoffels, V.M. & Moorman, A.F. (2003). Cardiomyocytes purified from differentiated embryonic stem cells exhibit characteristics of early chamber myocardium. J Mol Cell Cardiol 35(12), 14611472.CrossRefGoogle ScholarPubMed
Fu, A.Y., Spence, C., Scherer, A., Arnold, F.H. & Quake, S.R. (1999). A microfabricated fluorescence-activated cell sorter. Nat Biotechnol 17(11), 11091111.Google Scholar
Gill, E.M., Malpica, A., Alford, R.E., Nath, A.R., Follen, M., Richards-Kortum, R.R. & Ramanujam, N. (2003). Relationship between collagen autofluorescence of the human cervix and menopausal status. Photochem Photobiol 77(6), 653658.Google Scholar
Gong, J., Sagiv, O., Cai, H., Tsang, S.H. & Del Priore, L.V. (2008). Effects of extracellular matrix and neighboring cells on induction of human embryonic stem cells into retinal or retinal pigment epithelial progenitors. Exp Eye Res 86(6), 957–65.CrossRefGoogle ScholarPubMed
Guo, H.W., Chen, C.T., Wei, Y.H., Lee, O.K., Gukassyan, V., Kao, F.J. & Wang, H.W. (2008). Reduced nicotinamide adenine dinucleotide fluorescence lifetime separates human mesenchymal stem cells from differentiated progenies. J Biomed Opt 13(5), 050505.CrossRefGoogle ScholarPubMed
Hanninen, P.E., Soini, J.T. & Soini, E. (1999). Photon-burst analysis in two-photon fluorescence excitation flow cytometry. Cytometry 36(3), 183188.Google Scholar
Haubert, K., Drier, T. & Beebe, D. (2006). PDMS bonding by means of a portable, low-cost corona system. Lab Chip 6(12), 15481549.CrossRefGoogle ScholarPubMed
Haussinger, D., Ahrens, T., Aberle, T., Engel, J., Stetefeld, J. & Grzesiek, S. (2004). Proteolytic E-cadherin activation followed by solution NMR and X-ray crystallography. EMBO J 23(8), 16991708.CrossRefGoogle ScholarPubMed
Howell, P.B. Jr., Golden, J.P., Hilliard, L.R., Erickson, J.S., Mott, D.R. & Ligler, F.S. (2008). Two simple and rugged designs for creating microfluidic sheath flow. Lab Chip 8(7), 10971103.CrossRefGoogle ScholarPubMed
Huang, E.H., Hynes, M.J., Zhang, T., Ginestier, C., Dontu, G., Appelman, H., Fields, J.Z., Wicha, M.S. & Boman, B.M. (2009). Aldehyde dehydrogenase 1 is a marker for normal and malignant human colonic stem cells (SC) and tracks SC overpopulation during colon tumorigenesis. Cancer Res 69(8), 33823389.Google Scholar
Huh, D., Gu, W., Kamotani, Y., Grotberg, J.B. & Takayama, S. (2005). Microfluidics for flow cytometric analysis of cells and particles. Physiol Meas 26(3), R73R98.Google Scholar
Jiang, F., Qiu, Q., Khanna, A., Todd, N.W., Deepak, J., Xing, L., Wang, H., Liu, Z., Su, Y., Stass, S.A. & Katz, R.L. (2009). Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Mol Cancer Res 7(3), 330338.CrossRefGoogle ScholarPubMed
Kajiwara, K., Kamamoto, M., Ogata, S. & Tanihara, M. (2008). A synthetic peptide corresponding to residues 301-320 of human Wnt-1 promotes PC12 cell adhesion and hippocampal neural stem cell differentiation. Peptides 29(9), 14791485.Google Scholar
Kirkpatrick, N.D., Brewer, M.A. & Utzinger, U. (2007). Endogenous optical biomarkers of ovarian cancer evaluated with multiphoton microscopy. Cancer Epidemiol Biomarkers Prev 16(10), 20482057.CrossRefGoogle ScholarPubMed
Laiho, L.H., Pelet, S., Hancewicz, T.M., Kaplan, P.D. & So, P.T. (2005). Two-photon 3-D mapping of ex vivo human skin endogenous fluorescence species based on fluorescence emission spectra. J Biomed Opt 10(2), 024016.Google Scholar
Lakowicz, J.R. (1999). Principals of Fluorescence Spectroscopy. New York: Academic Press.CrossRefGoogle Scholar
Lakowicz, J.R., Szmacinski, H., Nowaczyk, K. & Johnson, M.L. (1992). Fluorescence lifetime imaging of free and protein-bound NADH. Proc Natl Acad Sci USA 89(4), 12711275.Google Scholar
Lee, G., Chang, C., Huang, S. & Yang, R. (2006). The hydrodynamic focusing effect inside rectangular microchannels. J Micromech Microeng 16, 10241032.CrossRefGoogle Scholar
Leong, D.T., Nah, W.K., Gupta, A., Hutmacher, D.W. & Woodruff, M.A. (2008). The osteogenic differentiation of adipose tissue-derived precursor cells in a 3D scaffold/matrix environment. Curr Drug Discov Technol 5(4), 319327.Google Scholar
Maltsev, V.A., Rohwedel, J., Hescheler, J. & Wobus, A.M. (1993). Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal, atrial and ventricular cell types. Mech Dev 44(1), 4150.Google Scholar
Mao, X., Lin, S.C., Dong, C. & Huang, T.J. (2009). Single-layer planar on-chip flow cytometer using microfluidic drifting based three-dimensional (3D) hydrodynamic focusing. Lab Chip 9(11), 15831589.CrossRefGoogle ScholarPubMed
Martinez-Fernandez, S., Hernandez-Torres, F., Franco, D., Lyons, G.E., Navarro, F. & Aranega, A.E. (2006). Pitx2c overexpression promotes cell proliferation and arrests differentiation in myoblasts. Dev Dyn 235(11), 29302939.CrossRefGoogle ScholarPubMed
Miller-Hance, W.C., LaCorbiere, M., Fuller, S.J., Evans, S.M., Lyons, G., Schmidt, C., Robbins, J. & Chien, K.R. (1993). In vitro chamber specification during embryonic stem cell cardiogenesis. Expression of the ventricular myosin light chain-2 gene is independent of heart tube formation. J Biol Chem 268(33), 2524425252.CrossRefGoogle ScholarPubMed
Pappajohn, D.J., Penneys, R. & Chance, B. (1972). NADH spectrofluorometry of rat skin. J Appl Physiol 33(5), 684687.CrossRefGoogle ScholarPubMed
Pearce, T.M., Williams, J.J., Kruzel, S.P., Gidden, M.J. & Williams, J.C. (2005). Dynamic control of extracellular environment in in vitro neural recording systems. IEEE Trans Neural Syst Rehab Eng 13(2), 207212.Google Scholar
Phillips, B.W., Horne, R., Lay, T.S., Rust, W.L., Teck, T.T. & Crook, J.M. (2008). Attachment and growth of human embryonic stem cells on microcarriers. J Biotechnol 138(1-2), 2432.Google Scholar
Provenzano, P.P., Rueden, C.T., Trier, S.M., Yan, L., Ponik, S.M., Inman, D.R., Keely, P.J. & Eliceiri, K.W. (2008). Nonlinear optical imaging and spectral-lifetime computational analysis of endogenous and exogenous fluorophores in breast cancer. J Biomed Opt 13(3), 031220.Google Scholar
Ramanujam, N., Mitchell, M.F., Mahadevan-Jansen, A., Thomsen, S.L., Staerkel, G., Malpica, A., Wright, T., Atkinson, N. & Richards-Kortum, R. (1996). Cervical precancer detection using a multivariate statistical algorithm based on laser-induced fluorescence spectra at multiple excitation wavelengths. Photochem Photobiol 64(4), 720735.Google Scholar
Reyes, J.M., Fermanian, S., Yang, F., Zhou, S.Y., Herretes, S., Murphy, D.B., Elisseeff, J.H. & Chuck, R.S. (2006). Metabolic changes in mesenchymal stem cells in osteogenic medium measured by autofluorescence spectroscopy. Stem Cells 24(5), 12131217.CrossRefGoogle ScholarPubMed
Simonnet, C. & Groisman, A. (2006). High-throughput and high-resolution flow cytometry in molded microfluidic devices. Anal Chem 78(16), 56535663.Google Scholar
Skala, M.C., Riching, K.M., Gendron-Fitzpatrick, A., Eickhoff, J., Eliceiri, K.W., White, J.G. & Ramanujam, N. (2007). In vivo multiphoton microscopy of NADH and FAD redox states, fluorescence lifetimes, and cellular morphology in precancerous epithelia. Proc Natl Acad Sci USA 104(49), 1949419499.Google Scholar
Skala, M.C., Squirrell, J.M., Vrotsos, K.M., Eickhoff, J.C., Gendron-Fitzpatrick, A., Eliceiri, K.W. & Ramanujam, N. (2005). Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues. Cancer Res 65(4), 11801186.CrossRefGoogle ScholarPubMed
Squirrell, J.M., Wokosin, D.L., White, J.G. & Bavister, B.D. (1999). Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability. Nat Biotechnol 17(8), 763767.Google Scholar
Studer, V.J., Jameson, R., Pellereau, E., Pepin, A. & Chen, Y. (2004). A microfluidic mammalian cell sorter based on fluorescence detection. Microelectr Eng 73, 852857.Google Scholar
Suhling, K., French, P.M. & Phillips, D. (2005). Time-resolved fluorescence microscopy. Photochem Photobiol Sci 4(1), 1322.Google Scholar
Szmacinski, H., Lakowicz, J.R. & Johnson, M.L. (1994). Fluorescence lifetime imaging microscopy: Homodyne technique using high-speed gated image intensifier. Methods Enzymol 240, 723748.Google Scholar
Tanei, T., Morimoto, K., Shimazu, K., Kim, S.J., Tanji, Y., Taguchi, T., Tamaki, Y. & Noguchi, S. (2009). Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential Paclitaxel and epirubicin-based chemotherapy for breast cancers. Clin Cancer Res 15(12), 42344241.Google Scholar
Teisanu, R.M., Lagasse, E., Whitesides, J.F. & Stripp, B.R. (2009). Prospective isolation of bronchiolar stem cells based upon immunophenotypic and autofluorescence characteristics. Stem Cells 27(3), 612622.Google Scholar
Uchugonova, A. & Konig, K. (2008). Two-photon autofluorescence and second-harmonic imaging of adult stem cells. J Biomed Opt 13(5), 054068.Google Scholar
Wakita, M., Nishimura, G. & Tamura, M. (1995). Some characteristics of the fluorescence lifetime of reduced pyridine nucleotides in isolated mitochondria, isolated hepatocytes, and perfused rat liver in situ. J Biochem 118(6), 11511160.CrossRefGoogle ScholarPubMed
Wang, J., Alexander, P., Wu, L., Hammer, R., Cleaver, O. & McKnight, S.L. (2009). Dependence of mouse embryonic stem cells on threonine catabolism. Science 325(5939), 435439.Google Scholar
Wang, M.M., Tu, E., Raymond, D.E., Yang, J.M., Zhang, H., Hagen, N., Dees, B., Mercer, E.M., Forster, A.H., Kariv, I., Marchand, P.J. & Butler, W.F. (2005). Microfluidic sorting of mammalian cells by optical force switching. Nat Biotechnol 23(1), 8387.Google Scholar
White, J.G., Squirrell, J.M. & Eliceiri, K.W. (2001). Applying multiphoton imaging to the study of membrane dynamics in living cells. Traffic 2(11), 775780.Google Scholar
Wokosin, D.L., Squirrell, J.M., Eliceiri, K.W. & White, J.G. (2003). Optical workstation with concurrent, independent multiphoton imaging and experimental laser microbeam capabilities. Rev Sci Instrum 74(1), 193201.CrossRefGoogle ScholarPubMed
Wolff, A., Perch-Nielsen, I.R., Larsen, U.D., Friis, P., Goranovic, G., Poulsen, C.R., Kutter, J.P. & Telleman, P. (2003). Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter. Lab Chip 3(1), 2227.Google Scholar
Yang, S., Undar, A. & Zahn, J.D. (2005). Blood plasma separation in microfluidic channels using flow rate control. ASAIO J 51(5), 585590.Google Scholar
Ying, Q.L., Nichols, J., Chambers, I. & Smith, A. (2003). BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115(3), 281292.Google Scholar
Yu, L., Huang, H., Dong, X., Wu, D., Qin, J. & Lin, B. (2008). Simple, fast and high-throughput single-cell analysis on PDMS microfluidic chips. Electrophoresis 29(24), 50555060.Google Scholar
Zhang, B., Wang, R.Z., Lian, Z.G., Song, Y. & Yao, Y. (2006). Experimental study on plasticity of proliferated neural stem cells in adult rats after cerebral infarction. Chin Med Sci J 21(3), 184188.Google Scholar
Zhang, Q., Piston, D.W. & Goodman, R.H. (2002). Regulation of corepressor function by nuclear NADH. Science 295(5561), 18951897.CrossRefGoogle ScholarPubMed
Zhong, C.F., Tkaczyk, E.R., Thomas, T., Ye, J.Y., Myc, A., Bielinska, A.U., Cao, Z., Majoros, I., Keszler, B., Baker, J.R. & Norris, T.B. (2008). Quantitative two-photon flow cytometry—In vitro and in vivo. J Biomed Opt 13(3), 034008.Google ScholarPubMed

Buschke supplementary material

Movie 1.mov

Download Buschke supplementary material(Video)
Video 575.6 KB
Supplementary material: PDF

Buschke supplementary material

Movie 1 caption.pdf

Download Buschke supplementary material(PDF)
PDF 31.4 KB

Buschke supplementary material

Movie 2.mov

Download Buschke supplementary material(Video)
Video 16.4 KB
Supplementary material: PDF

Buschke supplementary material

Movie 2 caption.pdf

Download Buschke supplementary material(PDF)
PDF 26 KB

Buschke supplementary material

Movie 3.mov

Download Buschke supplementary material(Video)
Video 35.9 KB
Supplementary material: PDF

Buschke supplementary material

Movie 3 caption.pdf

Download Buschke supplementary material(PDF)
PDF 28.7 KB

Buschke supplementary material

Movie 4.mov

Download Buschke supplementary material(Video)
Video 21.2 KB
Supplementary material: PDF

Buschke supplementary material

Movie 4 caption.pdf

Download Buschke supplementary material(PDF)
PDF 28 KB