Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-10T11:02:34.844Z Has data issue: false hasContentIssue false

Nano-Localized Thermal Analysis and Mapping of Surface and Sub-Surface Thermal Properties Using Scanning Thermal Microscopy (SThM)

Published online by Cambridge University Press:  21 November 2016

Maria J. Pereira*
Affiliation:
CICECO – Aveiro Institute of Materials and Physics Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
Joao S. Amaral
Affiliation:
CICECO – Aveiro Institute of Materials and Physics Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
Nuno J. O. Silva
Affiliation:
CICECO – Aveiro Institute of Materials and Physics Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
Vitor S. Amaral
Affiliation:
CICECO – Aveiro Institute of Materials and Physics Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
*
*Corresponding author. mariasapereira@ua.pt
Get access

Abstract

Determining and acting on thermo-physical properties at the nanoscale is essential for understanding/managing heat distribution in micro/nanostructured materials and miniaturized devices. Adequate thermal nano-characterization techniques are required to address thermal issues compromising device performance. Scanning thermal microscopy (SThM) is a probing and acting technique based on atomic force microscopy using a nano-probe designed to act as a thermometer and resistive heater, achieving high spatial resolution. Enabling direct observation and mapping of thermal properties such as thermal conductivity, SThM is becoming a powerful tool with a critical role in several fields, from material science to device thermal management. We present an overview of the different thermal probes, followed by the contribution of SThM in three currently significant research topics. First, in thermal conductivity contrast studies of graphene monolayers deposited on different substrates, SThM proves itself a reliable technique to clarify the intriguing thermal properties of graphene, which is considered an important contributor to improve the performance of downscaled devices and materials. Second, SThM’s ability to perform sub-surface imaging is highlighted by thermal conductivity contrast analysis of polymeric composites. Finally, an approach to induce and study local structural transitions in ferromagnetic shape memory alloy Ni–Mn–Ga thin films using localized nano-thermal analysis is presented.

Type
Materials Applications
Copyright
© Microscopy Society of America 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bodzenta, J., Juszczyk, J. & Chirtoc, M. (2013). Quantitative SThM based on determination of thermal probe dynamic resistance. Rev Sci Instrum 84, 093702.Google Scholar
Brites, C.D., Lima, P.P., Silva, N.J., Millán, A., Amaral, V.S., Palacio, F. & Carlos, L.D. (2012). Thermometry at the nanoscale. Nanoscale 4(16), 47994829.Google Scholar
Campos, J.M., Ferraria, A.M., Rego, A.M., Ribeiro, M.R. & Barros-Timmons, A. (2015). Studies on PLA grafting onto graphene oxide and its effect on the ensuing composite films. Mater Chem Phys 166, 122132.Google Scholar
Cho, S., Kang, S.D., Kim, W., Lee, E.-S., Woo, S.-J., Kong, K.-J., Kim, I., Kim, H.-D., Zhang, T., Stroscio, J.A., Kim, Y. & Lyeo, H.-K. (2013). Thermoelectric imaging of structural disorder in epitaxial graphene. Nat Mater 12(10), 913918.Google Scholar
Chung, J., Hwang, G., Kim, H., Yang, W. & Kwon, O. (2015). Towards an accurate measurement of thermal contact resistance at chemical vapor deposition-grown graphene/SiO2 interface through null point SThM. J Nanosci Nanotechnol 15(11), 90779082.Google Scholar
Cretin, B., Gomès, S., Trannoy, N. & Vairac, P. (2007). SThM. In Microscale and Nanoscale Heat Transfer, Volz, S. (Ed.), pp. 181238. Berlin: Springer-Verlag Berlin.Google Scholar
David, L., Goḿes, S. & Raynaud, M. (2007). Application of SThM for thermal conductivity measurements on meso-porous silicon thin films. J Phys D: Appl Phys 40, 43374346.Google Scholar
Dawson, A., Rides, M., Maxwell, A.S., Cuenat, A. & Samano, A.R. (2015). SThM techniques for polymeric thin films using temperature contrast mode to measure thermal diffusivity and a novel approach in conductivity contrast mode to the mapping of thermally conductive particles. Polym Test 41, 198208.Google Scholar
Dekker, C. (1999). Carbon nanotubes as molecular quantum wires. Phys Today 52, 2230.Google Scholar
Fanga, T-H. & Chang, W-J. (2005). Microthermal machining using SThM. Appl Surf Sci 240, 312317.Google Scholar
Fischer, H. (2008). Calibration of micro-thermal analysis for the detection of glass transition temperatures and melting points. J Therm Anal Calorim 92(2), 625630.Google Scholar
Gomès, S., Assy, A. & Chapuis, P. (2015). SThM: A review. Phys Status Solidi A 212, 477494.Google Scholar
Gomès, S., Newby, P., Canut, B., Termentzidis, K., Marty, O., Fréchette, L., Chantrenne, P., Aimez, V., Bluet, J.-M. & Lysenko, V. (2013). Characterization of the thermal conductivity of insulating thin films by SThM. Microelectr J 44, 10291034.Google Scholar
Gotzen, N.-A. & Van Assche, G. (2007). Nano-thermal analysis: Application to studies of polymer blends. Imaging Microsc 9(2), 3334.CrossRefGoogle Scholar
Hammiche, A., Pollock, H.M., Songy, M. & Hourstonz, D.J. (1996). Sub-surface imaging by SThM. Meas Sci Technol 7, 142150.Google Scholar
Hwang, G., Chung, J. & Kwon, O. (2014). Enabling low-noise null-point SThM by the optimization of scanning thermal microscope probe through a rigorous theory of quantitative measurement. Rev Sci Instrum 85(11), 114901.Google Scholar
Kar-Narayan, S., Crossley, S., Moya, X., Kovacova, V., Abergel, J., Bontempi, A., Baier, N., Defay, E. & Mathur, N.D. (2013). Direct electrocaloric measurements of a multilayer capacitor using SThM and infra-red imaging. Appl Phys Lett 102, 032903.Google Scholar
Kaźmierczak-Bałata, A., Bodzenta, J., Krzywiecki, M., Juszczyk, J., Szmidt, J. & Firek, P. (2013). Application of scanning microscopy to study correlation between thermal properties and morphology of BaTiO3 thin films. Thin Solid Films 545, 217221.Google Scholar
Khovaylo, V.V., Buchelnikov, V.D., Kainuma, R., Koledov, V.V., Ohtsuka, M., Shavrov, V.G., Takagi, T., Taskaev, S.V. & Vasiliev, A.N. (2005). Phase transitions in Ni2+xMn1-xGa with a high Ni excess. Phys Rev B 72, 224408/1224408/10.Google Scholar
Lee, E.-S., Cho, S., Lyeo, H.-K. & Kim, Y.-H. (2014). Seebeck effect at the atomic scale. Phys Rev Lett 112, 136601.CrossRefGoogle ScholarPubMed
Lee, J. & Gianchandani, Y. (2004). High-resolution scanning thermal probe with servocontrolled interface circuit for microcalorimetry and other applications. Rev Sci Instrum 75, 1222.Google Scholar
Leinhos, T., Stopka, M. & Oesterschulze, E. (1998). Micromachined fabrication of Si cantilevers with Schottky diodes integrated in the tip. Appl Phys A 66, S65S69.Google Scholar
Luo, K., Shi, Z., Lai, J. & Majumdar, A (1996). Nanofabrication of sensors on cantilever probe tips for scanning multiprobe microscopy. Appl Phys Lett 68, 325.CrossRefGoogle Scholar
Majumdar, A. (1999). SThM. Annu Rev Mater Sci 29, 505585.Google Scholar
Majumdar, A., Carrejo, J.P. & Lai, J. (1993). Thermal imaging using the atomic force microscope. Appl Phys Lett 62, 2501.Google Scholar
Martinek, J., Klapetek, P., Cimrman, R. & Valtr, M. (2014). Thermal conductivity analysis of delaminated thin films by SThM. Meas Sci Technol 25, 044022.Google Scholar
McConney, M., Kulkarni, D., Jiang, H., Bunning, T. & Tsukruk, V. (2012). A new twist on SThM. Nano Lett 12(3), 1218.CrossRefGoogle Scholar
Menges, F., Mensch, P., Schmid, H., Riel, H., Stemmer, A. & Gotsmann, B. (2015). Temperature mapping of operating nanoscale devices by scanning probe thermometry. Nat Commun 7, 10874.Google Scholar
Menges, F., Stemmer, A., Riel, H. & Gotsmann, B. (2012). Quantitative thermometry of nanoscale hot spots. Nano Lett 12, 596.Google Scholar
Menges, F., Stemmer, A., Riel, H. & Gotsmann, B. (2013). Thermal transport into graphene through nanoscopic contacts. Phys Rev Lett 111, 205901.Google Scholar
Meyers, G. & Pastzor, A. (n.d.). Correlation between nanoscale and bulk thermal analysis. Available at http://www.anasysinstruments.com/an10.pdf (retrieved 2016).Google Scholar
Mills, G., Weaver, J.M.R., Harris, G., Chen, W., Carrejo, J., Johnson, L. & Rogers, B. (1999). Detection of subsurface voids using SThM. Ultramicroscopy 80, 711.Google Scholar
Mills, G., Zhou, H., Midha, A., Donaldson, L. & Weaver, J.M.R (1998). SThM using batch fabricated thermocouple probes. Appl Phys Lett 72, 29002902.Google Scholar
NanoAndMore KNT-SThM-1an (n.d.). Scanning thermal microscopy probe. Available at http://www.nanoandmore.com/AFM-Probe-KNT-SThM-1an.html (retrieved 2016).Google Scholar
NanoAndMore PPP-CONTR (n.d.). Standard Contact Mode AFM Probe. Available at http://www.nanoandmore.com/AFM-Probe-PPP-CONTR.html (retrieved 2016).Google Scholar
Opeil, C.P., Mihaila, B., Schulze, R.K., Manosa, L., Planes, A., Hults, W.L., Fisher, R.A., Riseborough, P.S., Littlewood, P.B., Smith, J.L. & Lashley, J.C. (2008). Combined experimental and theoretical investigation of the premartensitic transition in Ni2MnGa. Phys Rev Lett 100, 165703.Google Scholar
Planes, A., Manosa, L. & Acet, M. (2009). Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys. J Phys Condens Matter 21, 233201.Google Scholar
Pollock, H.M. & Hammiche, A. (2001). Micro-thermal analysis: Techniques and applications. J Phys D: Appl Phys 34, R23R53.Google Scholar
Pons, J., Chernenko, V.A., Santamarta, R. & Cesari, E. (2000). Crystal structure of martensitic phases in Ni-Mn-Ga shape memory alloys. Acta Mater 48, 30273038.Google Scholar
Price, D.M. (2008). Micro-thermal analysis and related techniques. In Handbook of Thermal Analysis and Calorimetry Vol 5 Chapter 3, Brown, M.E. & Gallagher, P.K. (Eds.), pp. 5592. Amsterdam: Elsevier.Google Scholar
Pylkki, R., Moyer, P.J. & West, P.E. (1994). Scanning near-field optical microscopy and SThM. J Appl Phys 33, 37853790.Google Scholar
Reading, M. & Price, D.M. (2003). System and method for deconvoluting the effect of topography on scanning probe microscopy measurements US Pat. Appl. 20030004905.Google Scholar
Righi, L., Albertini, F., Pareti, L., Paoluzi, A. & Calestani, G. (2007). Commensurate and incommensurate “5M” modulated crystal structures in Ni–Mn–Ga martensitic phases. Acta Mater 55, 52375245.Google Scholar
Roh, H.H., Lee, J.S., Kim, D.L., Park, J., Kim, K., Kwon, O., Park, S.H., Choi, Y.K. & Majumdar, A. (2006). Novel nanoscale thermal property imaging technique: The 2ω method. I. Principle and the 2ω signal measurement. J Vac Sci Technol B 24, 23982404.Google Scholar
Royall, P.G., Craig, D.Q.M. & Grandy, D.B. (2001). The use of micro-thermal analysis as a means of in-situ characterization of a pharmaceutical tablet coat. Thermochim Acta 380, 165173.Google Scholar
Shi, L. (2005). Scanning thermal and thermoelectric microscopy. In Handbook of Microscopy for Nanotechnology, dv Yao, N. & Wang, Z.L. (Eds.), pp. 183205.Google Scholar
Shi, L. & Majumdar, A. (2002). Thermal transport mechanisms at nanoscale point contacts. J Heat Transfer 124(2), 329337.Google Scholar
Shi, L. & Majumdar, A. (2004). Micro-nano scale thermal imaging using scanning probe microscopy. In Applied Scanning Probe Techniques, Bhushan, B., Fuchs, H. & Hosaka, S. (Eds.), pp. 327362. Berlin: Springer-Verlag Berlin.Google Scholar
Sozinov, A., Likhachev, A.A., Lanska, N. & Ullakko, K. (2002). Giant magnetic-field-induced strain in NiMnGa seven-layered martensitic phase. Appl Phys Lett. 80, 1746.Google Scholar
Timofeeva, M., Bolshakov, A., Tovee, P., Zeze, D., Dubrovskii, V. & Kolosov, O. (2016). SThM with heat conductive nanowire probes. Ultramicroscopy 162, 4251.Google Scholar
Tovee, P., Pumarol, M., Rosamond, M., Jones, R., Petty, M., Zeze, D. & Kolosov, O. (2014). Nanoscale resolution SThM using carbon nanotube tipped thermal probes. Phys Chem Chem Phys 16(3), 11741181.CrossRefGoogle ScholarPubMed
Tovee, P., Pumarol, M., Zeze, D., Kjoller, K. & Kolosov, O. (2012). Nanoscale spatial resolution probes for SThM of solid state materials. J Appl Phys 112(11), 114317.Google Scholar
Tsukruka, V.V., Gorbunova, V.V. & Fuchigamia, N. (2003). Microthermal analysis of polymeric materials. Thermochim Acta 395, 151158.Google Scholar
Vasil’ev, A.N., Buchel’nikov, V.D., Takagi, T., Khovailo, V.V. & Estrin, E.I. (2003). Shape memory ferromagnets. Phys Uspekhi 46, 559588.Google Scholar
Volz, S. (2007). Microscale and nanoscale heat transfer. Boston: Kluwer Academic Publishers.Google Scholar
Webster, P.J., Ziebeck, K.R.A., Town, S.L. & Peak, M.S. (1984). Magnetic order and phase transformation in Ni2MnGa. Phil Mag B 49, 295310.Google Scholar
Wielgoszewski, G., Babij, M., Szeloch, R.F. & Gotszalk, T. (2014 a). Standard-based direct calibration method for SThM nanoprobes. Sens Actuators A 214, 16.Google Scholar
Wielgoszewski, G., Jóźwiak, G., Babij, M., Baraniecki, T., Geer, R. & Gotszalk, T. (2014 b). Investigation of thermal effects in through-silicon vias using SThM. Micron 66, 6368.Google Scholar
Williams, C.C. & Wickramasinghe, H.K. (1986). Scanning thermal profiler. Appl Phys Lett. 49, 15871589.Google Scholar
Williams, C.C. & Wickramasinghe, H.K. (1988). Scanning thermal profiler. Proc. SPIE 897: 129–134.Google Scholar
Wischnath, U., Welker, J., Munzel, M. & Kittel, A. (2008). The near-field scanning thermal microscope. Rev Sci Instrum 79, 073708.Google Scholar
Yoon, K., Hwang, G., Chung, J., Kwon, O., Kihm, K.D. & Lee, J.S. (2014). Measuring the thermal conductivity of residue-free suspended graphene bridge using null point SThM. Carbon 76, 7783.Google Scholar
Yue, Y. & Wang, X. (2012). Nanoscale thermal probing. Nano Rev 3, 11586.Google Scholar
Zhou, H., Midha, A., Mills, G., Thoms, S., Murad, S.K. & Weaver, J.M.R. (1998). Generic scanned-probe microscope sensors by combined micromachining and electron-beam lithography. J Vac Sci Technol B 16, 5458.Google Scholar