Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-10T17:02:13.615Z Has data issue: false hasContentIssue false

Neuron–Glial Interactions in the Developing Cerebellum

Published online by Cambridge University Press:  26 July 2012

Anna Dunaevsky*
Affiliation:
Developmental Neuroscience, Munroe Meyer Institute, University of Nebraska Medical Center, 985960 Nebraska Medical Center, Omaha, NE 68918, USA
*
Corresponding author. E-mail: adunaevsky@unmc.edu
Get access

Abstract

Advances in microscopy allow one to probe the structure of neurons and their interactions with astrocytes in brain slices and in vivo at ever increasing resolution. Moreover, the dynamic interactions between the cells can be examined in live preparation. In this paper we discuss how a variety of imaging approaches: confocal microscopy, electron microscopy, and multiphoton time-lapse microscopy are employed to probe neuron glia interactions in the developing cerebellum.

Type
Special Section: Seventh Omaha Imaging Symposium
Copyright
Copyright © Microscopy Society of America 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Auld, D.S. & Robitaille, R. (2003). Glial cells and neurotransmission: An inclusive view of synaptic function. Neuron 40(2), 389400.CrossRefGoogle ScholarPubMed
Deng, J. & Dunaevsky, A. (2005). Dynamics of dendritic spines and their afferent terminals: Spines are more motile than presynaptic boutons. Dev Biol 277, 366377.CrossRefGoogle ScholarPubMed
Dunaevsky, A., Tashiro, A., Majewska, A., Mason, C. & Yuste, R. (1999). Developmental regulation of spine motility in the mammalian central nervous system. Proc Natl Acad Sci USA 96, 1343813443.CrossRefGoogle ScholarPubMed
Grosche, J., Kettenmann, H. & Reichenbach, A. (2002). Bergmann glial cells form distinct morphological structures to interact with cerebellar neurons. J Neurosci Res 68, 138149.CrossRefGoogle ScholarPubMed
Grosche, J., Matyash, V., Moller, T., Verkhratsky, A., Reichenbach, A. & Kettenmann, H. (1999). Microdomains for neuron-glia interaction: Parallel fiber signaling to Bergmann glial cells. Nat Neurosci 2, 139143.CrossRefGoogle ScholarPubMed
Haber, M., Zhou, L. & Murai, K.K. (2006). Cooperative astrocyte and dendritic spine dynamics at hippocampal excitatory synapses. J Neurosci 26(35), 88818891.CrossRefGoogle ScholarPubMed
Henneberger, C., Papouin, T., Oliet, S.H. & Rusakov, D.A. (2010). Long-term potentiation depends on release of D-serine from astrocytes. Nature 463, 232236.CrossRefGoogle ScholarPubMed
Iino, M., Goto, K., Kakegawa, W., Okado, H., Sudo, M., Ishiuchi, S., Miwa, A., Takayasu, Y., Saito, I., Tsuzuki, K. & Ozawa, S. (2001). Glia-synapse interaction through Ca2+-permeable AMPA receptors in Bergmann glia. Science 292(5518), 926929.CrossRefGoogle ScholarPubMed
Lippman, J. & Dunaevsky, A. (2005). Dendritic spine morphogenesis and plasticity. J Neurobiol 64(1), 4757.CrossRefGoogle ScholarPubMed
Lippman, J.J., Lordkipanidze, T., Buell, M.E., Yoon, S.O. & Dunaevsky, A. (2008). Morphogenesis and regulation of Bergmann glial processes during Purkinje cell dendritic spine ensheathment and synaptogenesis. Glia 56(13), 14631477.CrossRefGoogle ScholarPubMed
Lippman Bell, J.J., Lordkipanidze, T., Cobb, N. & Dunaevsky, A. (2010). Bergmann glial ensheathment of dendritic spines regulates synapse number without affecting spine motility. Neuron Glia Biol 2, 18.Google Scholar
Muller, C.M. (1990). Dark-rearing retards the maturation of astrocytes in restricted layers of cat visual cortex. Glia 3(6), 487494.CrossRefGoogle ScholarPubMed
Muller, C.M. & Best, J. (1989). Ocular dominance plasticity in adult cat visual cortex after transplantation of cultured astrocytes. Nature 342(6248), 427430.CrossRefGoogle ScholarPubMed
Nimchinsky, E.A., Sabatini, B.L. & Svoboda, K. (2002). Structure and function of dendritic spines. Annu Rev Physiol 64, 313353.CrossRefGoogle ScholarPubMed
Nishida, H. & Okabe, S. (2007). Direct astrocytic contacts regulate local maturation of dendritic spines. J Neurosci 27(2), 331340.CrossRefGoogle ScholarPubMed
Peters, A. & Kaiserman-Abramof, I.R. (1970). The small pyramidal neuron of the rat cerebral cortex. The perikaryon, dendrites and spines. Am J Anat 127, 321356.CrossRefGoogle ScholarPubMed
Seil, F.J. (2001). Interactions between cerebellar Purkinje cells and their associated astrocytes. Histol Histopathol 16(3), 955968.Google ScholarPubMed
Son, Y.-J. & Thompson, W. (1995). Schwann cell processes guide regeneration of peripheral axons. Neuron 14, 125132.CrossRefGoogle ScholarPubMed
Spacek, J. (1985). Three-dimensional analysis of dendritic spines. III. Glial sheath. Anat Embryol (Berlin) 171(2), 245252.CrossRefGoogle ScholarPubMed
Ullian, E.M., Christopherson, K.S. & Barres, B.A. (2004). Role for glia in synaptogenesis. Glia 47(3), 209216.CrossRefGoogle ScholarPubMed
Ullian, E.M., Sapperstein, S.K., Christopherson, K.S. & Barres, B.A. (2001). Control of synapse number by glia. Science 291(5504), 657661.CrossRefGoogle ScholarPubMed
Ventura, R. & Harris, K.M. (1999). Three-dimensional relationships between hippocampal synapses and astrocytes. J Neurosci 19(16), 68976906.CrossRefGoogle ScholarPubMed
Volterra, A., Magistretti, P. & Haydon, P. (2002). The Tripartite Synapse: Glia in Synaptic Transmission. Oxford, UK: Oxford University Press.Google Scholar
Yamada, K., Fukaya, M., Shibata, T., Kurihara, H., Tanaka, K., Inoue, Y. & Watanabe, M. (2000). Dynamic transformation of Bergmann glial fibers proceeds in correlation with dendritic outgrowth and synapse formation of cerebellar Purkinje cells. J Comp Neurol 28, 106120.3.0.CO;2-N>CrossRefGoogle Scholar
Ziv, N.E. & Smith, S.J. (1996). Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17, 91102.CrossRefGoogle ScholarPubMed