Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T21:55:32.142Z Has data issue: false hasContentIssue false

A New Look at Lunar Soil Collected from the Sea of Tranquility during the Apollo 11 Mission

Published online by Cambridge University Press:  19 November 2010

Carol Kiely*
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015-3195, USA
Gary Greenberg
Affiliation:
University of Hawaii, Institute of Astronomy, Advanced Technology Research Center, HI 96768, USA
Christopher J. Kiely
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015-3195, USA
*
Corresponding author. E-mail: cak4@lehigh.edu
Get access

Abstract

Complementary state-of-the-art optical, scanning electron, and X-ray microscopy techniques have been used to study the morphology of Apollo 11 lunar soil particles (10084-47). The combination of innovative lighting geometries with image processing of a through focal series of images has allowed us to obtain a unique collection of high-resolution light micrographs of these fascinating particles. Scanning electron microscopy (SEM) stereo-pair imaging has been exploited to illustrate some of the unique morphological properties of lunar regolith. In addition, for the first time, X-ray micrographs with submicron resolution have been taken of individual particles using X-ray ultramicroscopy (XuM). This SEM-based technique lends itself readily to the imaging of pores, cracks, and inclusions and allows the internal structure of an entire particle to be viewed. Rotational SEM and XuM movies have also been constructed from a series of images collected at sequential angles through 360°. These offer a new and insightful view of these complex particles providing size, shape, and spatial information on many of their internal features.

Type
Cover Article
Copyright
Copyright © Microscopy Society of America 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bastin, J.A. (1980). Rotating lunar globules. Nature 283, 108.CrossRefGoogle Scholar
Bastin, J.A. & Volborth, A. (1974). The ellipsoidal and dumbell-shaped inclusions within particulate globules. Icarus 21, 112120.CrossRefGoogle Scholar
Brownlow, L., Mayo, S., Miller, P. & Sheffield-Parker, J. (2006). Towards 50-nanometer resolution with an SEM-hosted X-ray microscope. Microsc Anal 12(3), 1315.Google Scholar
Burlingame, A.L., Calvin, M., Han, J., Henderson, W., Reed, W. & Simonett, B.R. (1970). Organic compounds in lunar samples: Pyrolysis products, hydrocarbons and amino acids. Science 167, 751753.CrossRefGoogle Scholar
Carter, J.L. (1971). Chemistry and surface morphology of fragments from Apollo 12 soil. Proc Second Lunar Sci Conf 1, 873892.Google Scholar
Carter, J.L. & MacGregor, I.D. (1970a). Minerology, petrology and surface features of lunar samples 10062,35, 10067,9, 10069,30 and 10085,16. Science 167, 661663.CrossRefGoogle Scholar
Carter, J.L. & MacGregor, I.D. (1970b). Minerology, petrology and surface features of Apollo 11 samples. Proc Apollo 11 Lunar Sci Conf 1, 247265.Google Scholar
Carter, J.L. & McKay, D.S. (1972). Metallic mounds produced by reduction of material of a simulated lunar composition and implications on the origin of metallic mounds on lunar glasses. Proc Third Lunar Sci Conf (Suppl 3: Geochim Cosmochim Acta) 1, 953970.Google Scholar
Chao, C.T., Boreman, J.A., Minkin, J.A., James, O.B. & Desborough, G.A. (1970). Lunar glasses of impact origin: Physical and chemical characteristics and geological implications. J Geophys Res 75(35), 74457479.CrossRefGoogle Scholar
Chernyak, Yu.B. & Nussinov, M.D. (1976). On the mechanisms of lunar regolith glass formation. Nature 261, 664669.CrossRefGoogle Scholar
Cloud, P., Margolis, S.V., Moorman, M., Barker, J.M., Licari, G.R., Krinsley, D. & Barnes, V.E. (1970). Micromorphology and surface characteristics of lunar dust and breccia. Science 167, 776777.CrossRefGoogle ScholarPubMed
Duke, M.B., Woo, C.C., Sellers, G.A., Bird, M.L. & Finkelman, R.B. (1970). Genesis of soil at the tranquility base. Proc Apollo 11 Lunar Sci Conf (Suppl 1: Geochim Cosmochim Acta) 1, 347361.Google Scholar
Ebel, D.S., Fogel, R.A. & Rivers, M.L. (2005). Tomographic location of potential melt-bearing phenocysts in lunar glass spherules. Proc 36th Lunar and Planetary Sci Conf, League City, Texas, March 14–18, 2005, pp. 1505–1506.Google Scholar
Fox, S.W., Harada, K., Hare, P.E., Hinsch, G. & Mueller, G. (1970). Bio-organic compounds and glassy microparticles in lunar fines and other materials. Science 167, 767770.CrossRefGoogle ScholarPubMed
Fulchignoni, M., Funiciello, R., Taddeucci, A. & Trigila, R. (1971). Glassy spheroids in lunar fines from Apollo 12 samples 12070,37; 12001,73; and 12057,60. Proc Second Lunar Sci Conf (Suppl 2: Geochim Cosmochim Acta) 1, 937948.Google Scholar
Goldstein, J.L., Henderson, E.P. & Yakowitz, H. (1970). Investigation of lunar metal particles. Proc Apollo 11 Lunar Sci Conf 1, 499512.Google Scholar
Greenberg, G. (2008). A Grain of Sand: Nature's Secret Wonder. Minneapolis, MN: Voyageur Press.Google Scholar
Greenberg, G. & Boyde, A. (1993). Novel method for stereo imaging in light microscopy at high magnifications. NeuroImage 1(2), 121128.CrossRefGoogle ScholarPubMed
Greenberg, G. & Boyde, A. (1997). Convenient and controllable direct-view 3D imaging in conventional light microscopes: Approaches via illumination and inspection. Proc Royal Microsc Soc 32, 87100.Google Scholar
Hartung, J.B., Horz, F., McKay, D.S. & Baiamonte, F.L. (1972). Surface features on glass spherules from the Luna 16 sample. The Moon 5, 436446.CrossRefGoogle Scholar
Heiken, G. & Lofgren, G. (1971). Terrestrial glass spheres. Geol Soc Am Bull 82, 10451050.CrossRefGoogle Scholar
Heiken, G.H., McKay, D.S. & Brown, R.W. (1974). Lunar deposits of possible pyroclastic origin. Geochim Cosmochim Acta 38, 17031704.CrossRefGoogle Scholar
Heiken, G.H. & Vaniman, D.T. (1990). Characterization of lunar ilmenite resources. Proc 20th Lunar and Planetary Sci Conf, Houston, Texas, March 1989, pp. 239–247.Google Scholar
Housley, R.M., Grant, R.W. & Paton, N.E. (1973). Origin and characteristics of excess Fe metal in lunar glass welded aggregates. Proc Fourth Lunar Sci Conf (Suppl 4: Geochim Cosmochim Acta) 3, 27372749.Google Scholar
Keller, L.P. & McKay, D.S. (1997). The nature and origin of rims on lunar soil grains. Geochim Cosmochim Acta 64(11), 23312341.CrossRefGoogle Scholar
Lindsey, J. (1976). Developments in Solar System and Space Science, 3 Lunar Stratigraphy and Sedimentology. Kopa, Z. & Cameron, A.G.W. (Eds.). New York: Elsevier Scientific Publishing Company.Google Scholar
Lindsay, J.F. & Srnka, L.J. (1975). Galactic dust lanes and lunar soil. Nature 257, 776778.CrossRefGoogle Scholar
Lucey, P., Korotev, R.L., Gillis, J.J., Taylor, L.A., Lawrence, D., Campbell, B.A., Elphic, R., Feldman, B., Hood, L.L., Hunter, D., Mendilli, M., Noble, S., Papike, J.J., Reedy, R.C., Lawson, S., Prettyman, T., Gasnault, O. & Maurice, S. (2006). Understanding the lunar surface and space-moon interactions, new views of the moon. Rev Mineral Geochem 60, 83219.CrossRefGoogle Scholar
Lui, Y., Park, J., Schnare, D., Hill, E. & Taylor, L.A. (2008). Characterization of lunar dust for toxicological studies II: Texture and shape. J Aerosp Eng 21(10), 272279.Google Scholar
McKay, D.S., Greenwood, W.R. & Morrison, D.A. (1970). Origin of small lunar particles and breccia from the Apollo 11 site. Proc Apollo 11 Lunar Sci Conf 1, 673694.Google Scholar
McKay, D.S., Heiken, G., Basu, A., Blanford, G., Simon, S., Reedy, R., French, B.M. & Papike, J. (1991). The lunar regolith. Lunar Sourcebook: A User's Guide to the Moon, Chap. 7, pp. 285356 New York: Cambridge University Press.Google Scholar
Morris, R.V., Score, R., Dardano, C. & Heiken, G. (1983). Apollo 11 Samples Data Sheet in the Handbook of Lunar Soils, JSC 19069, Washington, DC: NASA.Google Scholar
Mueller, G. (1971). Morphology and petrostatistics of regular particles in Apollo 11 and Apollo 12 fines. Proc Second Lunar Sci Conf 3, 20412047.Google Scholar
Mueller, G. & Hinsch, G.W. (1970). Glassy particles in lunar fines. Nature 228, 254258.CrossRefGoogle ScholarPubMed
Nagy, B., Drew, C.M., Hamilton, P.B., Modzeleski, V.E., Murphy, M.E., Scott, W.M., Urey, H.C. & Young, M. (1970). Organic compounds in lunar samples: Pyrolysis products, hydrocarbons, amino acids. Science 167, 770773.CrossRefGoogle ScholarPubMed
Pawley, J.B. (Eds.) (1995). Handbook of Biological Confocal Microscopy. New York: Plenum Press.CrossRefGoogle Scholar
Pillinger, C.T. (1979). Solar-wind exposure effects in the lunar soil. Rep Prog Phys 42, 897967.CrossRefGoogle Scholar
Pugh, M.J. (1972). Rotation of lunar dumbell-shaped globules during formation. Nature 237, 158159.CrossRefGoogle Scholar
Ramsamooj, R., Doolin, E., Greenberg, G., Catalano, E. & Hewitt, C.W. (2002). Real-time, high-definition, three-dimensional microscopy of evaluating problematic cervical papanicolaou smears classified as atypical squamous cells of undetermined significance. Cancer Cytophathol 96(3), 181186.CrossRefGoogle ScholarPubMed
Robens, E., Bischoff, A., Schreiber, A., Dabrowski, A. & Unger, K.K. (2007). Investigation of the surface properties of lunar regolith: Part 1. Appl Surf Sci 253, 57095714.CrossRefGoogle Scholar
Rode, O.D., Ivanov, A.V., Nazarov, M.A., Cimbalnikova, A., Jurek, K. & Hejl, V. (1979). Atlas of Photomicrographs of the Surface of Structures of Lunar Regolith Particles. Prague: Academia.Google Scholar
Taylor, L.A., Patchen, A., Taylor, D-H.S., Chambers, J.G. & McKay, D.S. (1996). X-ray digital imaging petrography of lunar mare soils: Mode analyses of minerals and glasses. Icarus 124, 500512.CrossRefGoogle Scholar
Tolansky, S. (1970). Interferometric examination of small glassy spherules and related objects in a 5-gram lunar dust sample. Science 167, 742743.CrossRefGoogle Scholar
Wilkins, S.W., Gureyev, T.E., Gao, D., Pogany, A. & Stevenson, A.W. (1996). Phase-contrast imaging using polychromatic hard X-rays. Nature 384, 335338.CrossRefGoogle Scholar

Kiely supplementary material

Supplementary Movie 1. An SEM rotational movie of a ring agglutinate.

Download Kiely supplementary material(Video)
Video 2.4 MB

Kiely supplementary material

Supplementary Movie 2. An XuM rotational movie of a glassy spherule.

Download Kiely supplementary material(Video)
Video 3.8 MB

Kiely supplementary material

Supplementary Movie 3. An XuM rotational movie of a ring aggluntinate.

Download Kiely supplementary material(Video)
Video 1.9 MB

Kiely supplementary material

Supplementary Movie 4. An XuM rotational movie of a lunar regolith particle containing plates of ilmenite.

Download Kiely supplementary material(Video)
Video 5.5 MB